Advertisement

Molecular Docking Analysis of AHL Molecule on Plant Protein ARR10

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)

Abstract

In rhizosphere Plant Growth Promoting Rhizobacteria (PGPR) produce N-acyl-l-homoserine lactones (AHL) as the quorum-sensing (QS) signals. AHLs can act as trans-kingdom signalling molecules between plants and rhizobacteria and that can regulate plant growth and development. The plant-beneficial PGPR Burkholderia phytofirmans PsJN promotes growth in Arabidopsis thaliana by producing 3-oxo-dodecanoyl homoserine lactone (oxo-C14-HSL) from their quorum-sensing (QS) system. In bacteria, QS system functions by binding AHL to the LuxR-family of sensor/regulator proteins through their response regulator receiver domain. It has been hypothesized that by using similar response domain, Arabidopsis response regulator 10 (ARR10) proteins may act as binding site for 3-oxo-dodecanoyl homoserine lactone. ARRs are involved in cytokinin signalling pathways and thus these types of lactones can regulate growth in Arabidopsis. We prove the binding of oxo-C14-HSL with ARR10 by using molecular docking technique and analysing the docking result.

Keywords

Plant growth promoting rhizobacteria N-acyl-l-homoserine lactones Burkholderia phytofirmans PsJN 3-oxo-C14-Homo serine lactones Response regulator receiver domain Arabidopsis response regulator 10 (ARR10) proteins Molecular docking 

References

  1. 1.
    Castro, R.O., Bucio, J.L.: Small molecules involved in transkingdom communication between plants and rhizobacteria. In: de Bruijn, F.J. (eds) Molecular Microbial Ecology of the Rhizosphere, vol. 1 and 2, pp. 295–307. Published Online: 18 Mar 2013Google Scholar
  2. 2.
    Ahemad, M., Kibret, M.: Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26(1), 1–20 (2014)CrossRefGoogle Scholar
  3. 3.
    Choudhary, K.S., Hudaiberdiev, S., Gelencsér, Z., Coutinho, B.G., Venturi, V., PongorInt, S.: The organization of the quorum sensing luxI/R family genes in Burkholderia. J. Mol. Sci. 14, 13727–13747 (2013)CrossRefGoogle Scholar
  4. 4.
    El-Showk, S., Ruonala, R., Helariutt, Y.: Crossing paths: cytokinin signalling and crosstalk. Development 140, 1373–1383 (2013)CrossRefGoogle Scholar
  5. 5.
    Hosoda, K., Imamura, A., Yamazaki, T.: Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14(9), 2015–2029 (2002)CrossRefGoogle Scholar
  6. 6.
    Muller, B., Sheen, J.: Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature 453(7198), 1094–1097 (2008)CrossRefGoogle Scholar
  7. 7.
    Miao, C., Liu, F., Zhao, Q., Jia, Z., Song, S.: A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal. Biochem. Biophys. Res. Commun. 427(2), 293–298 (2012)CrossRefGoogle Scholar
  8. 8.
    Schenk, S.T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithöfer, A., Becker, A., Kogel, K.H., Schikora, A.: N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. The Plant Cell 26(6), 2708–2723 (2014)CrossRefGoogle Scholar
  9. 9.
    Palmer, A.G., Senechal, A.C., Mukherjee, A., Ané, J.-M., Blackwell, H.E.: Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem. Biol. 9(8), 1834–1845 (2014)CrossRefGoogle Scholar
  10. 10.
    Zheng, X., Miller, N.D., Lewis, D.R., Christians, M.J., Lee, K.H., Muday, G.K., Spalding, E.P., Vierstra, R.D.: AUXIN UP-REGULATED F-BOX PROTEIN1 regulates the cross talk between auxin transport and cytokinin signaling during plant root growth. Plant Physiol. 156(4), 1878–1893 (2011)CrossRefGoogle Scholar
  11. 11.
    Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L., López-Bucio, J.: The role of microbial signals in plant growth and development. Plant Signal. Behav. 4(8), 701–712 (2009)CrossRefGoogle Scholar
  12. 12.
    Zúñiga, A., Poupin, M.J., Donoso, R., Ledger, T., Guiliani, N., Gutiérrez, R.A., González, B.: Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. MPMI 26(5), 546–553 (2013)CrossRefGoogle Scholar
  13. 13.
    Coutinho, B.G., Mitter, B., Talbi, C., Sessitsch, A., Bedmar, E.J., Halliday, N., James, E.K., Cámara, M., Venturi, V.: Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster. Appl. Environ. Microbiol. 79(14), 4421–4432 (2013)CrossRefGoogle Scholar
  14. 14.
    Irwin, J.J., Shoichet, B.K.: ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45(1), 177–182 (2005)CrossRefGoogle Scholar
  15. 15.
    Protein Data Bank (PDB) http://www.rcsb.org/pdb/
  16. 16.
    Bikadi, Z., Hazai, E.: Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminf. 1, 15 (2009)CrossRefGoogle Scholar
  17. 17.
    Halgren, T.A.: Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94. J. Comput. Chem. 17(5–6), 490–519 (1998)Google Scholar
  18. 18.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., et al.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998)CrossRefGoogle Scholar
  19. 19.
    Solis, F.S., Wets, R.J.B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Basu, A., Sarkar, A.: Molecular docking study for functional annotation of a plant protein. In: Proceedings of CALCON 2014, IEEE Kolkata Section conference (in press)Google Scholar
  21. 21.
    Basu, A., Sarkar, A.: Molecular docking and ligand-protein interaction study of the expansin protein ATEXPA23 And EXLX1, In: Proceedings of 1st International Science and Technology Congress 2014 (IEMCONGRESS 2014), pp. 1–8, 2014. Elsevier, Kolkata. http://www.elsevierst.com/conference_book_download_chapter.php?cbid=81#chapter70
  22. 22.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Gurudas CollegeKolkataIndia
  2. 2.Government College of Engineering and Leather TechnologyKolkataIndia

Personalised recommendations