Skip to main content

The Diversity of Lichenised Fungi: Ecosystem Functions and Ecosystem Services

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

Biodiversity supports ecosystem functioning and productivity, and makes ecosystems more resilient and resistant to changes. Ecosystem functions are due to the biological, geochemical and physical processes occurring within an ecosystem. They relate to the structural components (e.g. water, soil, atmosphere, and biota) and their interactions within and across ecosystems. Functions that are useful to human well-being are defined as ‘ecosystem services’. Lichenised fungi are complex and form diverse ‘functional organismic communities’. They can be regarded as individuals as well as microhabitats comprising a huge variety of coexisting fungal, algal and bacterial taxa or genotypes, pertaining to most different domains of life. Lichens and their symbionts underpin a great number of ecosystem functions (i.e., rock decomposition, soil formation, carbon, and nitrogen fixation), support the diversity of numerous organisms, e.g. through the provision of food, habitat, shelter, camouflage, or nesting material. Furthermore, they provide numerous direct and indirect ecosystem services, which are presented in detail in this overview. Examples are the provision of lichen secondary metabolites and other compounds for medicinal and other purposes, the use of lichens as bioindicators of environmental changes, and as inspiration source in the context of culture, arts and design. The aim of the present review is to give insight in the current knowledge on ecosystem functions provided by lichens, as well as to point out which of these are, directly or indirectly, of benefit for human beings. Lichens are often neglected in ecosystem service analyses and nature conservation management, mostly due to underestimation of their role and difficulties in identification. The primary agents and lichen traits involved in ecosystem processes are analysed, and possible approaches on how to quantify, estimate the value, model and map lichen ecosystem services are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abed RM, Lam P, de Beer D, Stief P (2013) High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman. ISME J 7(9):1862–1875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmadijian V (2012) The lichens. Elsevier Verlag, Amsterdam

    Google Scholar 

  • Aptroot A, Berg MP (2004) Collembola help lichens in competition with algae. Lichenologist 36(2):167–169

    Google Scholar 

  • Ashman M, Puri G (2002) Essential soil science: a clear and concise introduction to soil science. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2008) Fungal depsidones—an inducible or constitutive defence against herbivores in the lichen Lobaria pulmonaria? Basic Appl Ecol 10:273–278

    Google Scholar 

  • Azenha G, Iturriaga T, Michelangeli FI, Rodriguez E (1998) Ethnolichenology, biological activity, and biochemistry of Amazonian lichen species. Emanations Rainforest 1(1). http://bhort.bh.cornell.edu/nih-mirt/emanations1-1/ethnolichenology.htm

  • Bargagli R, Sanchez-Hernandez JC, Monaci F (1999) Baseline concentrations of elements in the antartic macrolichen Umbilicaria decussata. Chemosphere 38(3):475–487

    CAS  PubMed  Google Scholar 

  • Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Processes 2:16

    Google Scholar 

  • Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77(4):1309–1314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker VE, Reeder J, Stetler R (1977) Biomass and habitat of nitrogen fixing lichens in an oak forest in the North Carolina Piedmont. Bryologist 80(1):93–99

    Google Scholar 

  • Behan-Pelletier VM, John MGSt, Winchester N (2008) Canopy Oribatida: Tree specific or microhabitat specific? Eur J Soil Biol 44:220–224

    Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    CAS  Google Scholar 

  • Belnap J, Eldridge D (2001) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological Soil crusts: structure, function, and management. Springer, Berlin, pp 363–383

    Google Scholar 

  • Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in Southeastern Utah. Land Degrad Dev 8:355–362

    Google Scholar 

  • Belnap J, Prasse R, Harper KT (2001) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 281–300

    Google Scholar 

  • Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Soil Res Rehabil 5:187–198

    CAS  Google Scholar 

  • Bishop E (1955) The shampoo—a cold spring. Houghton Mifflin Harcourt, Boston

    Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438

    PubMed  Google Scholar 

  • Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293

    Google Scholar 

  • Bokhorst S, Ronfort C, Huiskes A, Convey P, Aerts R (2007) Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Polar Biol 30:983–990

    Google Scholar 

  • Boonpragob K, Crittenden PD, Lumbsch TH (2012) Lichens: from genome to ecosystems in a changing world. MycoKeys 6:1–2. doi:10.3897/mycokeys.6.4829

    Google Scholar 

  • Botsford Comstock A (1986) Handbook of nature study. Comstock Publishing, Sacramento

    Google Scholar 

  • Braun H (2011) The little lichen dragon—an extraordinary katydid from the Ecuadorian Andes (Orthoptera, Tettigoniidae, Phaneropterinae, Dysoniini). Zootaxa 3032:33–39

    Google Scholar 

  • Braun RF, Ferner JW, Diesmos AC (1997) Definition of the Philippine parachute gecko, Ptychozon intermedium Taylor 1915 (Reptilia: Squamata: Gekkonidae): redescription, designation of a neotype, and comparison with related species. Herpetologica 53(3):357–373

    Google Scholar 

  • Brodo I, Duran Sharnoff S, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Bychek-Guschina IA (2002) Analysis of lipids in lichens. In: Protocols in Lichenology. Springer Lab Manuals, pp 332–347

    Google Scholar 

  • Cannon P (2010) Lichen camouflage and lichen mimicry. Br Lichen Soc Bull 106:39–41

    Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146

    CAS  Google Scholar 

  • Chiarini Monteiro R (2002) The Thysanoptera fauna of Brazil. In: Thrips and Tospoviruses: proceedings of the 7th international symposium on Thysanoptera, pp 325–340

    Google Scholar 

  • Cohen PA, Hudshon JB, Towers GH (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52(2):180–183

    CAS  PubMed  Google Scholar 

  • Convention on Biological Diversity (CBD) (1992) http://www.cbd.int/convention/text/

  • Cowling RM, Egoh B, Knight TA, O’Farrel P, Reyers B, Rouget M, Roux D, Welz A, Wilhelm-Rechman A (2008) An operational model for mainstreaming ecosystem services for implementation. Proc Natl Acad Sci 105:9483–9488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crespo A, Bridge PD, Cubero OF, Hawksworth DL (1997) Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata. Bibliotheca Lichenologica. In: Türk R, Zorer R (eds) Progress and problems in Lichenology in the Nineties. J. Cramer, Berlin, pp 73–79

    Google Scholar 

  • Crittenden PD (2000) Aspects of the ecology of mat-forming lichens. Rangifer 20(2–3):127–139

    Google Scholar 

  • Crossman ND, Burkhard B, Nedkov S, Willemen L, Petz K, Palomo I, Drakou EG, Martín-Lopez B, McPhearson T, Boyanova K, Alkemade R, Egoh B, Dunbar MB, Maes J (2013) A blueprint for mapping and modelling ecosystem services. Ecosyst Serv 4:4–14

    Google Scholar 

  • Diadick Casselman K (2003) Lichen dyes: the new source book. Dover Publications Inc., Mineola

    Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. CRC Press, Boca Raton

    Google Scholar 

  • Domaschke S, Fernández-Mendoza F, García MA, Martín MP, Printzen C (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Res 31:17353. doi:10.3402/polar.v31i0.17353

    Google Scholar 

  • Egoh B, Drakou EG, Dunbar MB, Maes J, Willemen L (2012) Indicators for mapping ecosystem services: a review. The European Commission’s Joint Research Centre (JRC) Scientific and Policy. http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/26749/1/lbna25456enn.pdf

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462. doi:10.1038/ngeo1486

    CAS  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Nash III TH (ed) 1996. Lichen biology. Cambridge University Press, Cambridge, pp 155–180

    Google Scholar 

  • Erdoğan S, Kaya M (2013) The biodiversity of Bdelloid rotifers on a single rock affected by cardinal directions. J Earth Sci Res 1(1):21–24

    Google Scholar 

  • Evans RD, Lange OL (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 263–279

    Google Scholar 

  • Favero Longo SE (2005) Rischio amianto nelle Alpi occidentali: licheni come agenti di bioremediation: un’analisi ecologica, microbiologica e chimica delle interazioni fra organismi vegetali e fungini e substrati asbestiferi applicata alla ex-miniera di crisotilo di Balangero e Corio (Torino, Italia). Ph.D. thesis, University of Torino (Italy)

    Google Scholar 

  • Friedl T (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). Ph.D. thesis, University of Bayreuth, Germany

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    CAS  PubMed  Google Scholar 

  • Gadd GM (2009) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    PubMed  Google Scholar 

  • Gärtner G (1985) Die Gattung Trebouxia Puymaly (Chlorellales, Chlorophyceae). Algol Stud 41:495–548

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371. doi:10.1080/20013591099254

    CAS  Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143(1):94–105

    PubMed  Google Scholar 

  • German PJ, Foster JR (2011) Difference in the aquatic micro-invertebrate fauna of two common foliose epiphytic lichens. www.oneonta.edu/academics/biofld/PUBS/ANNUAL/2011/16%20Lichen%20Paper.pdf

  • Gerson U (1973) Lichen-arthropod associations. Lichenologist 5:434–443

    Google Scholar 

  • Gerson U, Seaward MRD (1977) Lichen-invertebrate associations. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 69–119

    Google Scholar 

  • Gressit JL (1977) Symbiosis runs wild on the backs of high-living weevils. Smithsonian 7:135–136

    Google Scholar 

  • Grube M, Muggia L (2010) Identifying algal symbionts in lichen symbioses. In: Nimis PL, Vignes Lebbe R (eds) Tools for identifying biodiversity: progress and problems, pp 295–299

    Google Scholar 

  • Grube M, Cardinale M, de Castro JV Jr, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3(9):1105–1115

    PubMed  Google Scholar 

  • Gunnarsson B, Hake M, Hultengren S (2004) A functional relationship between species richness of spiders and lichens in spruce. Biodivers Conserv 13(4):685–693

    Google Scholar 

  • Guo S, Li B, Watanabe K (2007) Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China. Primates 48(4):268–276

    PubMed  Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Hawksworth DL, Lawton RM, Martin PG, Stanley-Price K (1984) Nutritive value of Ramalina duriaei grazed by gazelles in Oman. Lichenologist 16:93–94

    Google Scholar 

  • Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86

    Google Scholar 

  • Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawöger A, Türk R, Lange OL, Proksch P (1995a) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21(12):2079–2089

    CAS  PubMed  Google Scholar 

  • Hesbacher S, Baur B, Baur A, Proksch P (1995b) Sequestration of lichen compounds by three species of terrestrial snails. J Chem Ecol 21(2):233–246

    CAS  PubMed  Google Scholar 

  • Hocking DJ, Semlitsch RD (2007) Effects of timber harvest on breeding-site selection by gray treefrogs (Hyla versicolor). Biol Conserv 138:506–513

    Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Google Scholar 

  • Insarov G, Schroeter B (2002) Lichen monitoring and climate change. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Berlin, pp 183–201

    Google Scholar 

  • Itzhak Martinez JJ, Raz R, Mgocheki N, Álvarez R (2014) Epiphytic lichen is associated with species richness of gall-inducing aphids but not with niche differentiation among them. Arthopod-Plant Interact 8:17–24

    Google Scholar 

  • Jax K (2010) Ecosystem functioning. Cambridge University Press, Cambridge

    Google Scholar 

  • Johansen JD, Andersen KE, Svedman C, Bruze M, Bernard G, Giménez-Arnau E, Rastogi SC, Lepoittevin JP, Menné T (2003) Chloroatranol, an extremely potent allergen hidden in perfumes: a dose-response elicitation study. Contact Dermatitis 49(4):180–184

    CAS  PubMed  Google Scholar 

  • Jørgensen HB, Johansson T, Canbäck B, Hedlund K, Tunlid A (2005) Selective foraging of fungi by collembolans in soil. Biol Lett 1(2):243–246

    PubMed Central  PubMed  Google Scholar 

  • Joulain D, Tabacchi R (2009) Lichen extracts as raw materials in perfumery. Part 1: oakmoss. Flavour Fragrance J 24(2):49–61

    CAS  Google Scholar 

  • Kaczmarek L, Goldyn B, Welnicz W, Michalczyk L (2011) Ecological factors determining tardigrada distribution in Costa Rica. J Zool Syst Evol Res 49(Supp 1):78–83

    Google Scholar 

  • Kandziora M, Burkhard B, Müller F (2013) Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosyst Serv 4:47–59

    Google Scholar 

  • Karunaratne DN, Jayalal RG, Karunaratne V (2012) Lichen polysaccharides. In: Karunaratne DN (ed) The complex world of polysaccharides, Chap. 8. InTech Open Access Publishers, pp 215–226

    Google Scholar 

  • Kettunen M, Vihervaara P, Kinnunen S, D’Amato D, Badura T, Argimon, M, Ten Brink P (2012) Socio-economic importance of ecosystem services in the Nordic Countries. Norden Publications

    Google Scholar 

  • Kumar A, Singh N, Gaurav SS (2012) Bioremediation of metal contaminated sites by natural growing lichens found in hilly areas of Himachal Pradesh. Int J Curr Res 4(11):167–168

    Google Scholar 

  • Lakatos M, Lange-Bertalot H, Büdel B (2004) Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in Neotropical lowland rain forests. J Phycol 40:70–73

    Google Scholar 

  • Lalley JS, Viles HA, Henschel JR, Lalley V (2006) Lichen-dominated soil crusts as arthropod habitat in warm deserts. J Arid Environ 67(4):579–593

    Google Scholar 

  • Lange OL (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Heidelberg, pp 217–241

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Ullmann I, Wessels DCJ (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert. Modoqua 17:17–30

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen 25 soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Google Scholar 

  • Lazaro R, Canton Y, Sole-Benet A, Bevan J, Alexander R, Sancho LG, Puigdefabregas J (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102(2):252–266. doi:10.1016/j.geomorph.2008.05.005

    Google Scholar 

  • Leal IR, Oliveira PS (2000) Foraging ecology of attine ants in a Neotropical savannah: seasonal use of fungal substrate in the cerrado vegetation of Brazil. Insectes Soc 47:376–382

    Google Scholar 

  • Leavitt SD, Johnson LA, Goward T, St. Clair LL (2011) Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol Phylogenet Evol 60(3):317–332

    PubMed  Google Scholar 

  • Lindo Z, Stevenson SK (2007) Diversity and distribution of oribatid mites (Acari: Oribatida) associated with arboreal and terrestrial habitats in interior cedar-hemlock forests, British Columbia, Canada. Northwest Sci 81(4):305–315

    Google Scholar 

  • Liu X, Stanford CB, Yang J, Yao H, Li Y (2013) Foods eaten by the Sichuan snub-nosed Monkey (Rhinopithecus roxellana) in Shennongjia National Nature Reserve, China, in relation to nutritional chemistry. Am J Primatol 75:860–871. doi:10.1002/ajp.22149

    CAS  PubMed  Google Scholar 

  • Llano G (2012) Utilization of lichens in the arctic and subartict. Econ Bot 10:367–392

    Google Scholar 

  • Longton RE (1988) Biology of polar bryophytes and lichens. Studies in polar research. Cambridge University Press, Cambridge

    Google Scholar 

  • Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50:59–72

    Google Scholar 

  • Lurz PWW, Gurnell J, Magris L (2005) Sciurus vulgaris. Mamm Species 769:1–10

    Google Scholar 

  • Majerus MEN (2009) Industrial melanism in the peppered moth, Bistonbetularia: an excellent teaching example of darwinian evolution in action. Evo Edu Outreach 2:63–74

    Google Scholar 

  • Malhotra S, Subban R, Singh A (2013) Lichens-role in traditional medicine and drug. Internet J Altern Med 5(2). http://ispub.com/IJAM/5/2/4012

  • Manojlovic NT, Solujic S, Sukdolak S, Milosev M (2005) Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 76:244–246

    CAS  PubMed  Google Scholar 

  • Materna J (2000) Oribatid communities (Acari: Oribatida) inhabiting saxicolous mosses and lichens in the Krkonoše Mts. (Czech Republic). Pedobiologia 44(1):40–62

    Google Scholar 

  • Messuti MI, Kun M (2007) The occurrence of Pachytullbergia scabra (Collembola: Pachytullbergiidae) on Pseudocyphellaria granulate (lichenized Ascomycota). Revista de la Sociedad Entomológica Argentina 66(1–2):177–179

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC. http://millenniumassessment.org/documents/document.356.aspx.pdf

  • Mills AJ, Fey MV (2004) A simple laboratory infiltration method for measuring the tendency of soils to crust. Soil Use Manag 20:8–12

    Google Scholar 

  • Molina MC, DePriest PT, Lawrey JD (2005) Genetic variation in the widespread lichenicolous fungus Marchandiomyces corallines. Mycologia 97(2):454–463

    CAS  PubMed  Google Scholar 

  • Mound LA (2002) Thysanoptera biodiversity in the Neotropics. Revista de Biología Tropical 50(2):477–484

    PubMed  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycol Prog 7:147–160

    Google Scholar 

  • Muggia L, Schmitt I, Grube M (2009) Lichens as treasure chests of natural products. SIM NEWS, 85–97. http://www.uni-graz.at/~grubem/treasure.pdf

  • Mukherjee A, Wilske B, Navarro RA, Dippenaar-Schoeman A, Underhill LG (2010) Association of spiders and lichen on Robben Island, South Africa: a case report. JoTT Commun 2(4):815–819

    Google Scholar 

  • Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microbiol 77(12):4249–4252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nash III TH (ed) (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nimis PL, Skert N (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environ Exp Bot 55(1–2):175–182

    CAS  Google Scholar 

  • Nimis PL, Pinna D, Salvadori O (1992) Licheni e conservazione dei monumenti. Editori CLUEB Bologna

    Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Berlin

    Google Scholar 

  • Norris K, Bailey M, Keith A, Maskell L, Reading C, Turner S, Vanbergen A, Watt A et al (2011) Biodiversity in the context of ecosystem services (Chap. 4). UK National Ecosystem Assessment. Understanding nature’s value to society. Technical report. UNEP-WCMC, Cambridge, pp 63–104

    Google Scholar 

  • Nybakken L, Helmersen AM, Gauslaa Y, Selås V (2010) Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). J Chem Ecol 36(3):298–304

    CAS  PubMed  Google Scholar 

  • Peršoh D, Rambold G (2012) Lichen-associated fungi of the Letharietum vulpinae. Mycol Prog 11(3):753–760

    Google Scholar 

  • Petrzik K, Vondrák J, Barták M, Peksa O, Kubešová O (2013) Lichens—a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol. doi:10.1007/s10658-013-0246-z

  • Piercey-Normore M, De Priest PT (2001) Algal switching among lichen symbioses. Am J Bot 88(8):1490–1498

    CAS  PubMed  Google Scholar 

  • Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81:247–257

    CAS  Google Scholar 

  • Rambold G (1985) Fütterungsexperimente mit den an Flechten fressenden Raupen von Setina aurita Esp. (Lepidoptera, Arctiidae). Nachrichtenblatt der Bayerischen Entomologen 34:82–90

    Google Scholar 

  • Rambold G, Davydov E, Elix JA, Nash III TH, Scheidegger C, Zedda L (eds.) (2001 onwards) (last visited: 2014-07-13). LIAS light—a database for rapid identification of lichens. http://liaslight.lias.net/

  • Rambold G, Stadler M, Begerow D (2013) Mycology should be recognized as a field in biology at eye level with other major disciplines—a memorandum. Mycol Prog. doi:10.1007/s11557-013-0902-x

  • Rambold G, Elix JA, Heindl-Tenhunen B, Köhler T, Nash TH III, Neubacher D, Reichert W, Zedda L, Triebel D (2014) LIAS light—towards the ten thousand species milestone. MycoKeys 8:11–16. doi:10.3897/mycokeys.8.6605

    Google Scholar 

  • Ranković BR, Kosanić MM, Stanjković T (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement Altern Med. doi:10.1186/1472-6882-11-97

  • Redzic S, Barudanovic S, Pilipovic S (2010) Wild mushrooms and lichens used as human food for survival in war conditions; Podrinje—Zepa region (Bosnia and Herzegovina, W. Balkan). Res Hum Ecol 17:175–187

    Google Scholar 

  • Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32. doi:10.3897/mycokeys.6.3869

    Google Scholar 

  • Rogers R (2011) The fungal pharmacy: the complete guide to medicinal mushrooms and lichens of North America. North Atlantic Books, Berkeley

    Google Scholar 

  • Rosentreter R, Hayward GD, Wicklow-Howard M (1997) Northern flying squirrel seasonal food habits in the interior conifer forests of Central Idaho, USA. http://hdl.handle.net/2376/1250

  • Šatkauskienė I (2012) Microfauna of lichen (Xanthoria parietina) in Lithuania: diversity patterns in polluted and non-polluted sites. Baltic Forestry 18(2):255–262

    Google Scholar 

  • Sbarbaro C (1948) Trucioli. Mondadori, Milano

    Google Scholar 

  • Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) CRC handbook of lichenology, vol II. CRC Press Inc., Boca Raton, pp 107–129

    Google Scholar 

  • Seaward MRD (1997) Major impact made by lichens in biodeterioration processes. Int Biodeterior Biodegrad 40:269–273

    Google Scholar 

  • Sekercioglu CH (2010) Ecosystem functioning and services. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 45–72

    Google Scholar 

  • Sharnoff SD (1998) Bibliographic database of the human uses of lichens. http://www.lichen.com/usetaxon.html

  • Shukla AC, Chinlampianga M, Verma A, Dikshit A, Upreti DK (2011) Efficacy and potency of lichens of Mizoram as antimycotic agents. Indian Phytopath 64(4):367–370

    Google Scholar 

  • Skorepa AC, Sharp AJ (1971) Lichens in “packets” of lacewing larvae (Chrysopidae). Bryologist 74(3):363–364

    Google Scholar 

  • Sumotha M, Pauwels OSG, Kunya K, Limlikhitaksorn C, Ruksue S, Taokratok A, Ansermet M, Chanhome L (2012) A new species of Parachute Gecko (Squamata: Gekkonidae: genus Ptychozoon) from Kaeng Krachan National Park, western Thailand. Zootaxa 3513:68–78

    Google Scholar 

  • TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations, London. Earthscan, Washington DC

    Google Scholar 

  • Triggiani D, Ceccarelli D, Tiezzi A, Pisani T, Munzi S, Gaggi C, Loppi S (2009) Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia 64:59–62

    Google Scholar 

  • Viro P, Sulkava S (1985) Food of the bank vole in Northern Finnish Spruce Forests. Acta Theriol 30(15):259–266

    Google Scholar 

  • Will-Wolf S, Scheidegger C (2002) Monitoring lichen diversity and ecosystem function. An introduction. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Berlin, pp 143–145

    Google Scholar 

  • Wilske B, Kesselmeier J (1999) First measurements of the C1-and the C2-organic acids and aldehydes exchange between boreal lichens and the atmosphere. Phys Chem Earth (B) 24(6):725–728

    Google Scholar 

  • Wilske B, Holzinger R, Kesselmeier J (2001) Evidence for ethanolic fermentation in lichen during periods of high thallus water content. Symbiosis 31:95–111

    CAS  Google Scholar 

  • Wilske B, Burgheimer J, Maseyk K, Karnieli A, Zaady E, Andreae MO, Yakir D, Kesselmeier J (2009) Modeling the variability in annual carbon fluxes related to biological soil crusts in a Mediterranean shrubland. Biogeosciences Discuss 6:7295–7324

    Google Scholar 

  • Wyndham J (2008) Trouble with Lichen. Penguin, UK

    Google Scholar 

  • Yildirim E, Emsen B, Aslan A, Bulak Y, Ercisli S (2012) Insecticidal activity of lichens against the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22(2):151

    Google Scholar 

  • Zedda L (1996) Note etnobotaniche sui licheni della Sardegna. Not Soc Lich Ital 9:35–37

    Google Scholar 

  • Zedda L, Rambold G (2011) Lichens and their importance for the monitoring of environmental changes in southern Africa. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/23334

Download references

Acknowledgments

Dr. B. Wilske (University of Gießen, Germany) is kindly thanked for providing literature and useful information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Zedda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Zedda, L., Rambold, G. (2015). The Diversity of Lichenised Fungi: Ecosystem Functions and Ecosystem Services. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_7

Download citation

Publish with us

Policies and ethics