The Diversity of Lichenised Fungi: Ecosystem Functions and Ecosystem Services

Abstract

Biodiversity supports ecosystem functioning and productivity, and makes ecosystems more resilient and resistant to changes. Ecosystem functions are due to the biological, geochemical and physical processes occurring within an ecosystem. They relate to the structural components (e.g. water, soil, atmosphere, and biota) and their interactions within and across ecosystems. Functions that are useful to human well-being are defined as ‘ecosystem services’. Lichenised fungi are complex and form diverse ‘functional organismic communities’. They can be regarded as individuals as well as microhabitats comprising a huge variety of coexisting fungal, algal and bacterial taxa or genotypes, pertaining to most different domains of life. Lichens and their symbionts underpin a great number of ecosystem functions (i.e., rock decomposition, soil formation, carbon, and nitrogen fixation), support the diversity of numerous organisms, e.g. through the provision of food, habitat, shelter, camouflage, or nesting material. Furthermore, they provide numerous direct and indirect ecosystem services, which are presented in detail in this overview. Examples are the provision of lichen secondary metabolites and other compounds for medicinal and other purposes, the use of lichens as bioindicators of environmental changes, and as inspiration source in the context of culture, arts and design. The aim of the present review is to give insight in the current knowledge on ecosystem functions provided by lichens, as well as to point out which of these are, directly or indirectly, of benefit for human beings. Lichens are often neglected in ecosystem service analyses and nature conservation management, mostly due to underestimation of their role and difficulties in identification. The primary agents and lichen traits involved in ecosystem processes are analysed, and possible approaches on how to quantify, estimate the value, model and map lichen ecosystem services are discussed.

Keywords

Lichenised ascomycetes Biodiversity Ecosystem services Ecosystem functions 

References

  1. Abed RM, Lam P, de Beer D, Stief P (2013) High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman. ISME J 7(9):1862–1875PubMedCentralPubMedGoogle Scholar
  2. Ahmadijian V (2012) The lichens. Elsevier Verlag, AmsterdamGoogle Scholar
  3. Aptroot A, Berg MP (2004) Collembola help lichens in competition with algae. Lichenologist 36(2):167–169Google Scholar
  4. Ashman M, Puri G (2002) Essential soil science: a clear and concise introduction to soil science. Blackwell Science Ltd., OxfordGoogle Scholar
  5. Asplund J, Solhaug KA, Gauslaa Y (2008) Fungal depsidones—an inducible or constitutive defence against herbivores in the lichen Lobaria pulmonaria? Basic Appl Ecol 10:273–278Google Scholar
  6. Azenha G, Iturriaga T, Michelangeli FI, Rodriguez E (1998) Ethnolichenology, biological activity, and biochemistry of Amazonian lichen species. Emanations Rainforest 1(1). http://bhort.bh.cornell.edu/nih-mirt/emanations1-1/ethnolichenology.htm
  7. Bargagli R, Sanchez-Hernandez JC, Monaci F (1999) Baseline concentrations of elements in the antartic macrolichen Umbilicaria decussata. Chemosphere 38(3):475–487PubMedGoogle Scholar
  8. Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Processes 2:16Google Scholar
  9. Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77(4):1309–1314PubMedCentralPubMedGoogle Scholar
  10. Becker VE, Reeder J, Stetler R (1977) Biomass and habitat of nitrogen fixing lichens in an oak forest in the North Carolina Piedmont. Bryologist 80(1):93–99Google Scholar
  11. Behan-Pelletier VM, John MGSt, Winchester N (2008) Canopy Oribatida: Tree specific or microhabitat specific? Eur J Soil Biol 44:220–224Google Scholar
  12. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178Google Scholar
  13. Belnap J, Eldridge D (2001) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological Soil crusts: structure, function, and management. Springer, Berlin, pp 363–383Google Scholar
  14. Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in Southeastern Utah. Land Degrad Dev 8:355–362Google Scholar
  15. Belnap J, Prasse R, Harper KT (2001) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 281–300Google Scholar
  16. Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Soil Res Rehabil 5:187–198Google Scholar
  17. Bishop E (1955) The shampoo—a cold spring. Houghton Mifflin Harcourt, BostonGoogle Scholar
  18. Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438PubMedGoogle Scholar
  19. Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293Google Scholar
  20. Bokhorst S, Ronfort C, Huiskes A, Convey P, Aerts R (2007) Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Polar Biol 30:983–990Google Scholar
  21. Boonpragob K, Crittenden PD, Lumbsch TH (2012) Lichens: from genome to ecosystems in a changing world. MycoKeys 6:1–2. doi:10.3897/mycokeys.6.4829 Google Scholar
  22. Botsford Comstock A (1986) Handbook of nature study. Comstock Publishing, SacramentoGoogle Scholar
  23. Braun H (2011) The little lichen dragon—an extraordinary katydid from the Ecuadorian Andes (Orthoptera, Tettigoniidae, Phaneropterinae, Dysoniini). Zootaxa 3032:33–39Google Scholar
  24. Braun RF, Ferner JW, Diesmos AC (1997) Definition of the Philippine parachute gecko, Ptychozon intermedium Taylor 1915 (Reptilia: Squamata: Gekkonidae): redescription, designation of a neotype, and comparison with related species. Herpetologica 53(3):357–373Google Scholar
  25. Brodo I, Duran Sharnoff S, Sharnoff S (2001) Lichens of North America. Yale University Press, New HavenGoogle Scholar
  26. Bychek-Guschina IA (2002) Analysis of lipids in lichens. In: Protocols in Lichenology. Springer Lab Manuals, pp 332–347Google Scholar
  27. Cannon P (2010) Lichen camouflage and lichen mimicry. Br Lichen Soc Bull 106:39–41Google Scholar
  28. Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146Google Scholar
  29. Chiarini Monteiro R (2002) The Thysanoptera fauna of Brazil. In: Thrips and Tospoviruses: proceedings of the 7th international symposium on Thysanoptera, pp 325–340Google Scholar
  30. Cohen PA, Hudshon JB, Towers GH (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52(2):180–183PubMedGoogle Scholar
  31. Convention on Biological Diversity (CBD) (1992) http://www.cbd.int/convention/text/
  32. Cowling RM, Egoh B, Knight TA, O’Farrel P, Reyers B, Rouget M, Roux D, Welz A, Wilhelm-Rechman A (2008) An operational model for mainstreaming ecosystem services for implementation. Proc Natl Acad Sci 105:9483–9488PubMedCentralPubMedGoogle Scholar
  33. Crespo A, Bridge PD, Cubero OF, Hawksworth DL (1997) Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata. Bibliotheca Lichenologica. In: Türk R, Zorer R (eds) Progress and problems in Lichenology in the Nineties. J. Cramer, Berlin, pp 73–79Google Scholar
  34. Crittenden PD (2000) Aspects of the ecology of mat-forming lichens. Rangifer 20(2–3):127–139Google Scholar
  35. Crossman ND, Burkhard B, Nedkov S, Willemen L, Petz K, Palomo I, Drakou EG, Martín-Lopez B, McPhearson T, Boyanova K, Alkemade R, Egoh B, Dunbar MB, Maes J (2013) A blueprint for mapping and modelling ecosystem services. Ecosyst Serv 4:4–14Google Scholar
  36. Diadick Casselman K (2003) Lichen dyes: the new source book. Dover Publications Inc., MineolaGoogle Scholar
  37. Dighton J (2003) Fungi in ecosystem processes. CRC Press, Boca RatonGoogle Scholar
  38. Domaschke S, Fernández-Mendoza F, García MA, Martín MP, Printzen C (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Res 31:17353. doi:10.3402/polar.v31i0.17353 Google Scholar
  39. Egoh B, Drakou EG, Dunbar MB, Maes J, Willemen L (2012) Indicators for mapping ecosystem services: a review. The European Commission’s Joint Research Centre (JRC) Scientific and Policy. http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/26749/1/lbna25456enn.pdf
  40. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462. doi:10.1038/ngeo1486 Google Scholar
  41. Elix JA (1996) Biochemistry and secondary metabolites. In: Nash III TH (ed) 1996. Lichen biology. Cambridge University Press, Cambridge, pp 155–180Google Scholar
  42. Erdoğan S, Kaya M (2013) The biodiversity of Bdelloid rotifers on a single rock affected by cardinal directions. J Earth Sci Res 1(1):21–24Google Scholar
  43. Evans RD, Lange OL (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 263–279Google Scholar
  44. Favero Longo SE (2005) Rischio amianto nelle Alpi occidentali: licheni come agenti di bioremediation: un’analisi ecologica, microbiologica e chimica delle interazioni fra organismi vegetali e fungini e substrati asbestiferi applicata alla ex-miniera di crisotilo di Balangero e Corio (Torino, Italia). Ph.D. thesis, University of Torino (Italy)Google Scholar
  45. Friedl T (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). Ph.D. thesis, University of Bayreuth, GermanyGoogle Scholar
  46. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49PubMedGoogle Scholar
  47. Gadd GM (2009) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643PubMedGoogle Scholar
  48. Gärtner G (1985) Die Gattung Trebouxia Puymaly (Chlorellales, Chlorophyceae). Algol Stud 41:495–548Google Scholar
  49. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371. doi:10.1080/20013591099254 Google Scholar
  50. Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143(1):94–105PubMedGoogle Scholar
  51. German PJ, Foster JR (2011) Difference in the aquatic micro-invertebrate fauna of two common foliose epiphytic lichens. www.oneonta.edu/academics/biofld/PUBS/ANNUAL/2011/16%20Lichen%20Paper.pdf
  52. Gerson U (1973) Lichen-arthropod associations. Lichenologist 5:434–443Google Scholar
  53. Gerson U, Seaward MRD (1977) Lichen-invertebrate associations. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 69–119Google Scholar
  54. Gressit JL (1977) Symbiosis runs wild on the backs of high-living weevils. Smithsonian 7:135–136Google Scholar
  55. Grube M, Muggia L (2010) Identifying algal symbionts in lichen symbioses. In: Nimis PL, Vignes Lebbe R (eds) Tools for identifying biodiversity: progress and problems, pp 295–299Google Scholar
  56. Grube M, Cardinale M, de Castro JV Jr, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3(9):1105–1115PubMedGoogle Scholar
  57. Gunnarsson B, Hake M, Hultengren S (2004) A functional relationship between species richness of spiders and lichens in spruce. Biodivers Conserv 13(4):685–693Google Scholar
  58. Guo S, Li B, Watanabe K (2007) Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China. Primates 48(4):268–276PubMedGoogle Scholar
  59. Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18Google Scholar
  60. Hawksworth DL, Lawton RM, Martin PG, Stanley-Price K (1984) Nutritive value of Ramalina duriaei grazed by gazelles in Oman. Lichenologist 16:93–94Google Scholar
  61. Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86Google Scholar
  62. Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawöger A, Türk R, Lange OL, Proksch P (1995a) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21(12):2079–2089PubMedGoogle Scholar
  63. Hesbacher S, Baur B, Baur A, Proksch P (1995b) Sequestration of lichen compounds by three species of terrestrial snails. J Chem Ecol 21(2):233–246PubMedGoogle Scholar
  64. Hocking DJ, Semlitsch RD (2007) Effects of timber harvest on breeding-site selection by gray treefrogs (Hyla versicolor). Biol Conserv 138:506–513Google Scholar
  65. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, BerlinGoogle Scholar
  66. Insarov G, Schroeter B (2002) Lichen monitoring and climate change. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Berlin, pp 183–201Google Scholar
  67. Itzhak Martinez JJ, Raz R, Mgocheki N, Álvarez R (2014) Epiphytic lichen is associated with species richness of gall-inducing aphids but not with niche differentiation among them. Arthopod-Plant Interact 8:17–24Google Scholar
  68. Jax K (2010) Ecosystem functioning. Cambridge University Press, CambridgeGoogle Scholar
  69. Johansen JD, Andersen KE, Svedman C, Bruze M, Bernard G, Giménez-Arnau E, Rastogi SC, Lepoittevin JP, Menné T (2003) Chloroatranol, an extremely potent allergen hidden in perfumes: a dose-response elicitation study. Contact Dermatitis 49(4):180–184PubMedGoogle Scholar
  70. Jørgensen HB, Johansson T, Canbäck B, Hedlund K, Tunlid A (2005) Selective foraging of fungi by collembolans in soil. Biol Lett 1(2):243–246PubMedCentralPubMedGoogle Scholar
  71. Joulain D, Tabacchi R (2009) Lichen extracts as raw materials in perfumery. Part 1: oakmoss. Flavour Fragrance J 24(2):49–61Google Scholar
  72. Kaczmarek L, Goldyn B, Welnicz W, Michalczyk L (2011) Ecological factors determining tardigrada distribution in Costa Rica. J Zool Syst Evol Res 49(Supp 1):78–83Google Scholar
  73. Kandziora M, Burkhard B, Müller F (2013) Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosyst Serv 4:47–59Google Scholar
  74. Karunaratne DN, Jayalal RG, Karunaratne V (2012) Lichen polysaccharides. In: Karunaratne DN (ed) The complex world of polysaccharides, Chap. 8. InTech Open Access Publishers, pp 215–226Google Scholar
  75. Kettunen M, Vihervaara P, Kinnunen S, D’Amato D, Badura T, Argimon, M, Ten Brink P (2012) Socio-economic importance of ecosystem services in the Nordic Countries. Norden PublicationsGoogle Scholar
  76. Kumar A, Singh N, Gaurav SS (2012) Bioremediation of metal contaminated sites by natural growing lichens found in hilly areas of Himachal Pradesh. Int J Curr Res 4(11):167–168Google Scholar
  77. Lakatos M, Lange-Bertalot H, Büdel B (2004) Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in Neotropical lowland rain forests. J Phycol 40:70–73Google Scholar
  78. Lalley JS, Viles HA, Henschel JR, Lalley V (2006) Lichen-dominated soil crusts as arthropod habitat in warm deserts. J Arid Environ 67(4):579–593Google Scholar
  79. Lange OL (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Heidelberg, pp 217–241Google Scholar
  80. Lange OL, Meyer A, Zellner H, Ullmann I, Wessels DCJ (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert. Modoqua 17:17–30Google Scholar
  81. Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen 25 soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264Google Scholar
  82. Lazaro R, Canton Y, Sole-Benet A, Bevan J, Alexander R, Sancho LG, Puigdefabregas J (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102(2):252–266. doi:10.1016/j.geomorph.2008.05.005 Google Scholar
  83. Leal IR, Oliveira PS (2000) Foraging ecology of attine ants in a Neotropical savannah: seasonal use of fungal substrate in the cerrado vegetation of Brazil. Insectes Soc 47:376–382Google Scholar
  84. Leavitt SD, Johnson LA, Goward T, St. Clair LL (2011) Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol Phylogenet Evol 60(3):317–332PubMedGoogle Scholar
  85. Lindo Z, Stevenson SK (2007) Diversity and distribution of oribatid mites (Acari: Oribatida) associated with arboreal and terrestrial habitats in interior cedar-hemlock forests, British Columbia, Canada. Northwest Sci 81(4):305–315Google Scholar
  86. Liu X, Stanford CB, Yang J, Yao H, Li Y (2013) Foods eaten by the Sichuan snub-nosed Monkey (Rhinopithecus roxellana) in Shennongjia National Nature Reserve, China, in relation to nutritional chemistry. Am J Primatol 75:860–871. doi:10.1002/ajp.22149 PubMedGoogle Scholar
  87. Llano G (2012) Utilization of lichens in the arctic and subartict. Econ Bot 10:367–392Google Scholar
  88. Longton RE (1988) Biology of polar bryophytes and lichens. Studies in polar research. Cambridge University Press, CambridgeGoogle Scholar
  89. Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50:59–72Google Scholar
  90. Lurz PWW, Gurnell J, Magris L (2005) Sciurus vulgaris. Mamm Species 769:1–10Google Scholar
  91. Majerus MEN (2009) Industrial melanism in the peppered moth, Bistonbetularia: an excellent teaching example of darwinian evolution in action. Evo Edu Outreach 2:63–74Google Scholar
  92. Malhotra S, Subban R, Singh A (2013) Lichens-role in traditional medicine and drug. Internet J Altern Med 5(2). http://ispub.com/IJAM/5/2/4012
  93. Manojlovic NT, Solujic S, Sukdolak S, Milosev M (2005) Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 76:244–246PubMedGoogle Scholar
  94. Materna J (2000) Oribatid communities (Acari: Oribatida) inhabiting saxicolous mosses and lichens in the Krkonoše Mts. (Czech Republic). Pedobiologia 44(1):40–62Google Scholar
  95. Messuti MI, Kun M (2007) The occurrence of Pachytullbergia scabra (Collembola: Pachytullbergiidae) on Pseudocyphellaria granulate (lichenized Ascomycota). Revista de la Sociedad Entomológica Argentina 66(1–2):177–179Google Scholar
  96. Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC. http://millenniumassessment.org/documents/document.356.aspx.pdf
  97. Mills AJ, Fey MV (2004) A simple laboratory infiltration method for measuring the tendency of soils to crust. Soil Use Manag 20:8–12Google Scholar
  98. Molina MC, DePriest PT, Lawrey JD (2005) Genetic variation in the widespread lichenicolous fungus Marchandiomyces corallines. Mycologia 97(2):454–463PubMedGoogle Scholar
  99. Mound LA (2002) Thysanoptera biodiversity in the Neotropics. Revista de Biología Tropical 50(2):477–484PubMedGoogle Scholar
  100. Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycol Prog 7:147–160Google Scholar
  101. Muggia L, Schmitt I, Grube M (2009) Lichens as treasure chests of natural products. SIM NEWS, 85–97. http://www.uni-graz.at/~grubem/treasure.pdf
  102. Mukherjee A, Wilske B, Navarro RA, Dippenaar-Schoeman A, Underhill LG (2010) Association of spiders and lichen on Robben Island, South Africa: a case report. JoTT Commun 2(4):815–819Google Scholar
  103. Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microbiol 77(12):4249–4252PubMedCentralPubMedGoogle Scholar
  104. Nash III TH (ed) (1996) Lichen biology. Cambridge University Press, CambridgeGoogle Scholar
  105. Nimis PL, Skert N (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environ Exp Bot 55(1–2):175–182Google Scholar
  106. Nimis PL, Pinna D, Salvadori O (1992) Licheni e conservazione dei monumenti. Editori CLUEB BolognaGoogle Scholar
  107. Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, BerlinGoogle Scholar
  108. Norris K, Bailey M, Keith A, Maskell L, Reading C, Turner S, Vanbergen A, Watt A et al (2011) Biodiversity in the context of ecosystem services (Chap. 4). UK National Ecosystem Assessment. Understanding nature’s value to society. Technical report. UNEP-WCMC, Cambridge, pp 63–104Google Scholar
  109. Nybakken L, Helmersen AM, Gauslaa Y, Selås V (2010) Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). J Chem Ecol 36(3):298–304PubMedGoogle Scholar
  110. Peršoh D, Rambold G (2012) Lichen-associated fungi of the Letharietum vulpinae. Mycol Prog 11(3):753–760Google Scholar
  111. Petrzik K, Vondrák J, Barták M, Peksa O, Kubešová O (2013) Lichens—a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol. doi:10.1007/s10658-013-0246-z
  112. Piercey-Normore M, De Priest PT (2001) Algal switching among lichen symbioses. Am J Bot 88(8):1490–1498PubMedGoogle Scholar
  113. Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81:247–257Google Scholar
  114. Rambold G (1985) Fütterungsexperimente mit den an Flechten fressenden Raupen von Setina aurita Esp. (Lepidoptera, Arctiidae). Nachrichtenblatt der Bayerischen Entomologen 34:82–90Google Scholar
  115. Rambold G, Davydov E, Elix JA, Nash III TH, Scheidegger C, Zedda L (eds.) (2001 onwards) (last visited: 2014-07-13). LIAS light—a database for rapid identification of lichens. http://liaslight.lias.net/
  116. Rambold G, Stadler M, Begerow D (2013) Mycology should be recognized as a field in biology at eye level with other major disciplines—a memorandum. Mycol Prog. doi:10.1007/s11557-013-0902-x
  117. Rambold G, Elix JA, Heindl-Tenhunen B, Köhler T, Nash TH III, Neubacher D, Reichert W, Zedda L, Triebel D (2014) LIAS light—towards the ten thousand species milestone. MycoKeys 8:11–16. doi:10.3897/mycokeys.8.6605 Google Scholar
  118. Ranković BR, Kosanić MM, Stanjković T (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement Altern Med. doi:10.1186/1472-6882-11-97
  119. Redzic S, Barudanovic S, Pilipovic S (2010) Wild mushrooms and lichens used as human food for survival in war conditions; Podrinje—Zepa region (Bosnia and Herzegovina, W. Balkan). Res Hum Ecol 17:175–187Google Scholar
  120. Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32. doi:10.3897/mycokeys.6.3869 Google Scholar
  121. Rogers R (2011) The fungal pharmacy: the complete guide to medicinal mushrooms and lichens of North America. North Atlantic Books, BerkeleyGoogle Scholar
  122. Rosentreter R, Hayward GD, Wicklow-Howard M (1997) Northern flying squirrel seasonal food habits in the interior conifer forests of Central Idaho, USA. http://hdl.handle.net/2376/1250
  123. Šatkauskienė I (2012) Microfauna of lichen (Xanthoria parietina) in Lithuania: diversity patterns in polluted and non-polluted sites. Baltic Forestry 18(2):255–262Google Scholar
  124. Sbarbaro C (1948) Trucioli. Mondadori, MilanoGoogle Scholar
  125. Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) CRC handbook of lichenology, vol II. CRC Press Inc., Boca Raton, pp 107–129Google Scholar
  126. Seaward MRD (1997) Major impact made by lichens in biodeterioration processes. Int Biodeterior Biodegrad 40:269–273Google Scholar
  127. Sekercioglu CH (2010) Ecosystem functioning and services. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 45–72Google Scholar
  128. Sharnoff SD (1998) Bibliographic database of the human uses of lichens. http://www.lichen.com/usetaxon.html
  129. Shukla AC, Chinlampianga M, Verma A, Dikshit A, Upreti DK (2011) Efficacy and potency of lichens of Mizoram as antimycotic agents. Indian Phytopath 64(4):367–370Google Scholar
  130. Skorepa AC, Sharp AJ (1971) Lichens in “packets” of lacewing larvae (Chrysopidae). Bryologist 74(3):363–364Google Scholar
  131. Sumotha M, Pauwels OSG, Kunya K, Limlikhitaksorn C, Ruksue S, Taokratok A, Ansermet M, Chanhome L (2012) A new species of Parachute Gecko (Squamata: Gekkonidae: genus Ptychozoon) from Kaeng Krachan National Park, western Thailand. Zootaxa 3513:68–78Google Scholar
  132. TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations, London. Earthscan, Washington DCGoogle Scholar
  133. Triggiani D, Ceccarelli D, Tiezzi A, Pisani T, Munzi S, Gaggi C, Loppi S (2009) Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia 64:59–62Google Scholar
  134. Viro P, Sulkava S (1985) Food of the bank vole in Northern Finnish Spruce Forests. Acta Theriol 30(15):259–266Google Scholar
  135. Will-Wolf S, Scheidegger C (2002) Monitoring lichen diversity and ecosystem function. An introduction. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Berlin, pp 143–145Google Scholar
  136. Wilske B, Kesselmeier J (1999) First measurements of the C1-and the C2-organic acids and aldehydes exchange between boreal lichens and the atmosphere. Phys Chem Earth (B) 24(6):725–728Google Scholar
  137. Wilske B, Holzinger R, Kesselmeier J (2001) Evidence for ethanolic fermentation in lichen during periods of high thallus water content. Symbiosis 31:95–111Google Scholar
  138. Wilske B, Burgheimer J, Maseyk K, Karnieli A, Zaady E, Andreae MO, Yakir D, Kesselmeier J (2009) Modeling the variability in annual carbon fluxes related to biological soil crusts in a Mediterranean shrubland. Biogeosciences Discuss 6:7295–7324Google Scholar
  139. Wyndham J (2008) Trouble with Lichen. Penguin, UKGoogle Scholar
  140. Yildirim E, Emsen B, Aslan A, Bulak Y, Ercisli S (2012) Insecticidal activity of lichens against the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control 22(2):151Google Scholar
  141. Zedda L (1996) Note etnobotaniche sui licheni della Sardegna. Not Soc Lich Ital 9:35–37Google Scholar
  142. Zedda L, Rambold G (2011) Lichens and their importance for the monitoring of environmental changes in southern Africa. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/23334

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.BIO-DiverseBonnGermany
  2. 2.Mycology DepartmentUniversity of BayreuthBayreuthGermany

Personalised recommendations