Notes for Rule-Based Design from Cognitive and Visual-Computational Models, Especially Shape Algebras

  • Paul VargheseEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 34)


Some background notes for rule-based design and its models along cognitive and computational lines are discussed; additions to Stiny’s shape grammars include shape algebras for multi-dimensional representations; extensions to Knight’s visual-computational algebras are proposed for development for application in design and construction, which largely allows intuitive visual conditions.


Shape grammar Models of design Rule-based design Nonstandard algebras 


  1. 1.
    Stiny, G.: What is a design? Environ. Plan. 17(1), 97–103 (1990)CrossRefGoogle Scholar
  2. 2.
    Simon, H.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)Google Scholar
  3. 3.
    Varghese, P.: Shape algebras and rules in design: bridging the gap between formal and intuitive thinking. Architecture and Regional Planning, Indian Institute of Technology, Kharagpur (2013)Google Scholar
  4. 4.
    Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)Google Scholar
  5. 5.
    Newell, A., Simon, H.A.: Human Problem-Solving. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  6. 6.
    Stiny, G.: What rule(s) should I use? Nexus Netw. J. 13(1), 15–47 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press/Bradford Books, Cambridge (1986)Google Scholar
  8. 8.
    Minsky, M.: A framework for representing knowledge. In: Winston, P.K. (ed.) The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York (1975)Google Scholar
  9. 9.
    Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum, Hillsdale (1977)zbMATHGoogle Scholar
  10. 10.
    Goel, V., Grafman, J.: Role of the right prefrontal cortex in ill-structured planning. Cogn. Neuropsychol. 17(5), 415–436 (2000)CrossRefGoogle Scholar
  11. 11.
    Goel, V.: Creating artifacts: integrating cognitive processes and functional anatomy. In: Gero, J. (ed.) Unpublished manuscript, SDC-10. GWU, Washington D.C (2010)Google Scholar
  12. 12.
    Cross, N.: Descriptive models of creative design: application to an example. Des. Stud. 18, 427–455 (1997)CrossRefGoogle Scholar
  13. 13.
    Rosenman, M., Gero, J.: Creativity in design using a design prototype approach. In: Gero, J., Maher, M.L. (eds.) Modelling Creativity and Knowledge-Based Creative Design. Lawrence Erlbaum, New Jersey (1993)Google Scholar
  14. 14.
    Akin, O.: Necessary conditions for design expertise and creativity. Des. Stud., 107–113 (1990)Google Scholar
  15. 15.
    Cross, N., Lawson, B.: Studying outstanding designers. In: Gero, J., Bonnardel (eds.) Studying Designers, pp. 283–287. Sydney, Australia (2005)Google Scholar
  16. 16.
    Gabora, L.: Revenge of the ‘neurds’: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Res. J. 22(1), 1–13 (2010)CrossRefGoogle Scholar
  17. 17.
    Goldschmidt, G.: Ubiquitous serendipity: potential visual design stimuli are everywhere. In: Gero, J. (ed.), SDC ‘10, Washington DC. (2010)
  18. 18.
    Lawson, B.: How Designers Think. The Architectural Press, London (1980)Google Scholar
  19. 19.
    Peirce, C.S.: Chance, Love and Logic. Kegan Paul, Trench, Trubnor, London (1923)Google Scholar
  20. 20.
    Magnani, L.: Abductive Cognition: The Epistemological and Eco-cognitive Dimensions of Hypothetical Reasoning. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    March, L.: Introduction: the logic of design and the question of value. In: March, L. (ed.) The Architecture of Form. Cambridge University Press, Cambridge (1976)Google Scholar
  22. 22.
    Lindenmayer, A.: Mathematical models for cellular interaction in development I—filaments with one-sided inputs. J. Theor. Biol. 18, 280–289 (1968)CrossRefGoogle Scholar
  23. 23.
    Stiny, G., Mitchell, W.J.: The Palladian grammar. Environ. Plan. B 5(1), 5–18 (1978)CrossRefGoogle Scholar
  24. 24.
    Koning, H., Eizenberg, J.: The language of the prairie: Frank Lloyd Wright’s prairie houses. Environ. Plan. B 8, 295–323 (1981)CrossRefGoogle Scholar
  25. 25.
    Agarwal, M., Cagan, J.: A blend of different tastes: the language of coffee makers. Environ. Plan. B 25(2), 205–226 (1998)CrossRefGoogle Scholar
  26. 26.
    Pugliese, M., Cagan, J.: Capturing a rebel: modeling the Harley-Davidson brand through a motorcycle shape grammar. Res. Eng. Des. 13(3), 139–156 (2002)Google Scholar
  27. 27.
    McCormack, J.P., Cagan, J., Vogel, C.M.: Speaking the Buick language: capturing, understanding, and exploring brand identity with shape grammars. Des. Stud. 25(1), 1–29 (2004)CrossRefGoogle Scholar
  28. 28.
    Shea, K., Cagan, J., Fenves, S.J.: A shape annealing approach to optimal truss design with dynamic grouping of members. J. Mech. Des. 119(3), 388–394 (1997)CrossRefGoogle Scholar
  29. 29.
    Antonsson, E.K., Cagan, J. (eds.): Formal Engineering Design Synthesis. Cambridge University Press, Cambridge (2001)Google Scholar
  30. 30.
    Stiny, G.: Introduction to shape and shape grammars. Environ. Plan. B 7(3), 343–351 (1980)CrossRefGoogle Scholar
  31. 31.
    Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns Buildings Construction. Oxford University Press, Oxford (1977)Google Scholar
  32. 32.
    Sinha, P.: Recognizing complex patterns: review. Nat. Neurosci. Suppl. 5, 1093–1097 (2002)CrossRefGoogle Scholar
  33. 33.
    Thagard, P.: Cognitive architectures. In: Frankish, K., Ramsay, W. (eds.) The Cambridge Handbook of Cognitive Science, pp. 50–70. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  34. 34.
    Knight, T.W.: Computing with ambiguity. Environ. Plan. B 30(2), 165–180 (2003)CrossRefGoogle Scholar
  35. 35.
    Varghese, P., Merchant, A.: Modeling shapes for design and computation: hybrid algebras for the designer. In: Proceedings of the 10th International Conference, CAADRIA ‘05, vol. 2, pp. 79–88. New Delhi (2005)Google Scholar
  36. 36.
    Jowers, I.: Computation with curved shapes: towards freeform shape generation in design. PhD thesis, Department of Design and Innovation, The Open University, UK (2006)Google Scholar
  37. 37.
    Gips, J.: Computer implementation of shape grammars. Retrieved from (1999)
  38. 38.
    Trešcák, T.: Shape grammar interpreter. Retrieved from (2009)
  39. 39.
    Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19(3), 113–126 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.IntelliARCHIrinjalakudaIndia

Personalised recommendations