Advertisement

Hybridizing Particle Swarm Optimization with Invasive Weed Optimization for Solving Nonlinear Constrained Optimization Problems

  • A. K. Ojha
  • Y. Ramu Naidu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 336)

Abstract

Most of engineering applications are occurring in the form of nonlinear constrained optimization problems. They have to be solved in point of accuracy and faster convergence. In this paper, the combination of particle swarm optimization (PSO) and invasive weed optimization (IWO) is discussed and the stochastic ranking method is incorporated to handle the constraints, named as a PSO-IWO-SR. Due to page limitation, four well-known nonlinear constrained optimization engineering design problems are adopted to validate the performance of the PSO-IWO-SR. The results obtained by the proposed method PSO-IWO-SR are better than the state-of-the-art evolutionary algorithms with respect to accuracy and computational time.

Keywords

Particle swarm optimization Invasive weed optimization Stochastic ranking Nonlinear constrained optimization problems 

References

  1. 1.
    Floudas, C.A., Pardalos, P.M.: A collection of test problems for constraints global optimization algorithms. In: Goos, G., Hartmanis, J. (eds.) LNCS, vol. 455, Springer Verlag, Berlin (1990)Google Scholar
  2. 2.
    Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. In: Beckmann, M., Kunzi, H.P. (eds.) LNEMS, vol. 187. Springer-Verlag, Heidelberg (1981)Google Scholar
  3. 3.
    Pappula, L., Ghosh, D.: Large array synthesis using invasive weed optimization. In: International Conference on Microwave and Photonics, Dhanbad, India, December 2013, pp. 1–6. IEEE Press (2013)Google Scholar
  4. 4.
    Yang, J.M., Chen, Y., Horng, J.T., Kao, C.Y.: Applying family competition to evolution strategies for constrained optimization. In: Peter, J.A., Robert, G.R., John, R.M., Russ, E. (eds.) Evolutionary Programming VI, 6th International Conference, EP97 Indianapolis, Indiana, USA, April 1997. LNCS, pp. 1231, pp. 201–211. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Homaifar, A., Lia, A.H., Qi, X.: Constrained optimization via genetic algorithms. Simulation 2, 242–254 (1994)CrossRefGoogle Scholar
  6. 6.
    Jefferey, A., Christopher, R.H.: On the use of non-stationary function to solve nonlinear constrained optimization problems with GA’s. In: Fogel, D. (eds.) IEEE World Congress on Computational Intelligence, Orland, Florida, June 2994, vol. 2, pp. 579–584. IEEE Press (1994)Google Scholar
  7. 7.
    Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. AI Series. Springer-Verlag, New York (1992)CrossRefMATHGoogle Scholar
  8. 8.
    Cai, X., Hu, Z., Fan, Z.: A novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimization. Soft. Comput. 17, 1893–1910 (2013)CrossRefGoogle Scholar
  9. 9.
    Ramu Naidu, Y., Ojha, A.K.: Solving nonlinear constrained optimization problems using invasive weed optimization. In: Lakhmi, C.J., Srikanta, P., Nikhil, I. (eds.) Intelligent Computing Communication and Devices, Bhubaneswar, India, April 2014. 308, pp. 127–133, Springer, India (2014)Google Scholar
  10. 10.
    Kennady, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural network, Perth, WA, December 1995, vol. 4, pp. 1942–1948. IEEE Press (1995)Google Scholar
  11. 11.
    Huan, Z., Jianglong, Y., Arash, T., Peihong, W.: An improved particle Swarm optimization algorithm with invasive weed. Adv. Mater. Res. 621, 356–359 (2013)Google Scholar
  12. 12.
    Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1, 355–366 (2006)CrossRefGoogle Scholar
  13. 13.
    Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)Google Scholar
  14. 14.
    Mezura, E.: Alternative to handle constraints in evolutionary optimization. Dissertation, CINVESTAV-IPN, Mexico (2004)Google Scholar
  15. 15.
    Rao, S.S.: Optimization: Theory and Applications. Wiley Eastern Limited, New Delhi (1977)Google Scholar
  16. 16.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4, 284–294 (2000)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Moon, I., Yang, S., Wang, D.: A memetic particle swarm optimization algorithm for multimodal optimization problems. Inf. Sci. 197, 38–52 (2012)CrossRefGoogle Scholar
  18. 18.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for constrained optimization problems. In: 2nd Euro-International Symposium on Computational Intelligence, Kosice, pp. 214–220. IOS Press (2002)Google Scholar
  19. 19.
    Montes, E.M., Coello C.A.C., Reyes, J.V.: Increasing successful offspring and diversity in differential evolution for engineering design. In: Seventh International Conference on Adaptive Computing in Design And Manufacture (ACDM 2006), April 2006, pp. 131–139 (2006)Google Scholar
  20. 20.
    Hui, L., Zixing, C., Yong, W.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10, 629–640 (2010)CrossRefGoogle Scholar
  21. 21.
    Arturo, H.A, et al.: COPSO: Constrained Optimization via PSO Algorithm. Technical report, Communication Tecnica No. I-07-04/22-02-2007 (2007)Google Scholar
  22. 22.
    He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20, 89–99 (2007)CrossRefGoogle Scholar
  23. 23.
    He, Q., Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 186, 1407–1422 (2007)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Huang, V.L., Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 17–24 July 2006, IEEE Press (2006)Google Scholar
  25. 25.
    Coello, C.A.C., Becerra, R.L.: Efficient evolutionary optimization through the use of a cultural algorithm. Eng. Optim. 36, 219–236 (2004)CrossRefGoogle Scholar
  26. 26.
    Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7, 386–396 (2003)CrossRefGoogle Scholar
  27. 27.
    Coello, C.A.C., Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inf. 16, 193–203 (2002)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia

Personalised recommendations