A Novel PSO Based Back Propagation Learning-MLP (PSO-BP-MLP) for Classification

  • Himansu Das
  • Ajay Kumar Jena
  • Janmenjoy Nayak
  • Bighnaraj Naik
  • H. S. Behera
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Abstract

Particle swarm optimization (PSO) is a powerful globally accepted evolutionary swarm intelligence method for solving both linear and non-linear problems. In this paper, a PSO based evolutionary multilayer perceptron is proposed which is intended for classification task in data mining. The network is trained by using the back propagation algorithm. An extensive experimental analysis has been performed by comparing the performance of the proposed method with MLP, GA-MLP. Comparison result shows that, PSO-MLP gives promising results in majority of test case problems.

Keywords

Data mining Classification Particle swarm optimization Genetic algorithm Multilayer perceptron 

References

  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.: Swarm intelligence morgan kaufmann, 3rd edn. Academic Press, New Delhi (2001)Google Scholar
  3. 3.
    Cai, J., Pan, W.D.: On fast and accurate block-based motion estimation algorithms using particle swarm optimization. Inf. Sci. 197(15), 53–64 (2012)CrossRefGoogle Scholar
  4. 4.
    Du, W., Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178(15), 3096–3109 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Zhang, Y., et al.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192(1), 213–227 (2012)CrossRefGoogle Scholar
  6. 6.
    Chuanwen, J., Bompardb, E.: A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization. Math. Comput. Simul. 68(1), 57–65 (2005)CrossRefMATHGoogle Scholar
  7. 7.
    Li, Y., et al.: Dynamic optimal reactive power dispatch based on parallel particle swarm optimization algorithm. Comput. Math Appl. 57(11–12), 1835–1842 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Li, Y., et al.: Optimal reactive power dispatch using particle swarms optimization algorithm based pareto optimal set. Lect. Notes Comput. Sci. 5553, 152–161 (2009)CrossRefGoogle Scholar
  9. 9.
    Naik, B., Nayak, J., Behera, H.S.: A Novel FLANN with a hybrid PSO and GA based gradient descent learning for classification. In: Proceedings of the 3rd International Conference on Frontiers of Intelligenct Computing (FICTA). Advances in Intelligent Systems and Computing 327, vol. 1, 745–754 (2015). doi: 10.1007/978-3-319-11933-5_84
  10. 10.
    Wang, H., et al.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)CrossRefGoogle Scholar
  11. 11.
    Neri, F., et al.: Compact particle swarm optimization. Inf. Sci. 239, 96–121 (2013)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Valdez, F., et al.: Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Inf. Sci. 270, 143–153 (2014)CrossRefGoogle Scholar
  13. 13.
    Ugolottia, R., et al.: Particle swarm optimization and differential evolution for model-based object detection. Appl. Soft Comput. 13, 3092–3105 (2013)CrossRefGoogle Scholar
  14. 14.
    Shin, Y., Kita, E.: Effect of second best particle information for particle swarm optimization. Procedia Comput. Sci. 24, 76–83 (2013)CrossRefGoogle Scholar
  15. 15.
    Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13, 3066–3091 (2013)CrossRefGoogle Scholar
  16. 16.
    Leu, M.-S., et al.: Particle swarm optimization with grey evolutionary analysis. Appl. Soft Comput. 13, 4047–4062 (2013)CrossRefGoogle Scholar
  17. 17.
    Sun, C., et al.: A new fitness estimation strategy for particle swarm optimization. Inf. Sci. 221, 355–370 (2013)CrossRefMATHGoogle Scholar
  18. 18.
    Imran, M., et al.: An overview of particle swarm optimization variants. Procedia Eng. 53, 491–496 (2013)CrossRefGoogle Scholar
  19. 19.
    Pan, F., et.al. : Analysis of standard particle swarm optimization algorithm based on markov chain. Acta Automatica Sinica. vol. 39, no. 4. April (2013)Google Scholar
  20. 20.
    Mahyar, H., et al. : Comparison of multilayer perceptron and radial basis function neural networks for EMG-based facial gesture recognition. In: Proceedings of the 8th international conference on robotic, vision, signal processing and power applications. Springer, Singapore (2014)Google Scholar
  21. 21.
    Ndiaye, A., et al.: Development of a multilayer perceptron (MLP) based neural network controller for grid connected photovoltaic system. Int. J. Phys. Sci. 9(3), 41–47 (2014)CrossRefGoogle Scholar
  22. 22.
    Roy, M., et al.: Ensemble of multilayer perceptrons for change detection in remotely sensed images. Geoscience and remote sensing letters. IEEE11.1, pp. 49–53 (2014)Google Scholar
  23. 23.
    Hassanien, A., et al.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14, 62–71 (2014)CrossRefGoogle Scholar
  24. 24.
    Aydin, K., Kisi, O.: Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks. Neural Comput. Appl. 24(3–4), 583–597 (2014)CrossRefGoogle Scholar
  25. 25.
    Velo, R., et al.: Wind speed estimation using multilayer perceptron. Energ. Convers. Manag. 81, 1–9 (2014)CrossRefGoogle Scholar
  26. 26.
    Lee, S.: Choeh. J. Y. : Predicting the helpfulness of online reviews using multilayer perceptron neural networks. Expert Syst. Appl. 41(6), 3041–3046 (2014)CrossRefGoogle Scholar
  27. 27.
    Azim, S., Aggarwal, S. : Hybrid model for data imputation: Using fuzzy c means and multi layer perceptron. 2014 IEEE International Advance computing conference (IACC). IEEE (2014)Google Scholar
  28. 28.
    Chaudhuri, S., et al.: Medium-range forecast of cyclogenesis over North Indian Ocean with multilayer perceptron model using satellite data. Nat. Hazards 70(1), 173–193 (2014)CrossRefGoogle Scholar
  29. 29.
    Das, H., Mishra, S.K., Roy, D.S.: The topological structure of the Odisha power grid: a complex network analysis. IJMCA 1(1), 012–016 (2013)Google Scholar
  30. 30.
    Das, H., Roy, D. S. : A grid computing service for power system monitoring. Int. J. Comput. Appl. 62 (2013)Google Scholar
  31. 31.
    Das, H., et.al. : The complex network analysis of power grid: a case study of the West Bengal power network. In: Intelligent Computing, Networking and Informatics, pp. 17–29. Springer India (2014)Google Scholar
  32. 32.
    Das, H., et.al. : Grid computing-based performance analysis of power system: a graph theoretic approach. Intell. Comput. Commun. Dev. 259–266 (2015)Google Scholar
  33. 33.
    Bache, K., Lichman, M.: UCI machine learning repository. University of California, Irvine. CA. School of Information and Computer Science. (2013) [http://archive.ics.uci.edu/ml]
  34. 34.
    Alcalá-Fdez, J., et al.: KEEL data-mining software tool: data set repository. integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Himansu Das
    • 1
  • Ajay Kumar Jena
    • 1
  • Janmenjoy Nayak
    • 2
  • Bighnaraj Naik
    • 2
  • H. S. Behera
    • 2
  1. 1.School of Computer EngineeringKIIT UniversityBhubaneswarIndia
  2. 2.Department of Computer Science Engineering and Information TechnologyVeer Surendra Sai University of TechnologySambalpurIndia

Personalised recommendations