Theoretical Analysis of Expected Population Variance Evolution for a Differential Evolution Variant

  • S. Thangavelu
  • G. Jeyakumar
  • Roshni M. Balakrishnan
  • C. Shunmuga Velayutham
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Abstract

In this paper we derive an analytical expression to describe the evolution of expected population variance for Differential Evolution (DE) variant—DE/current-to-best/1/bin (as a measure of its explorative power). The derived theoretical evolution of population variance has been validated by comparing it against the empirical evolution of population variance by DE/current-to-best/1/bin on four benchmark functions.

Keywords

Differential evolution Explorative-exploitative balance Population variance Explorative power Empirical evolution of population variance 

References

  1. 1.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI 1995Google Scholar
  2. 2.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic strategy for global optimization and continuous spaces. J. Global Optim. 11, 341–359 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Berlin (2005)Google Scholar
  4. 4.
    Zaharie, D.: On the explorative power of differential evolution algorithms. In: Proceeding of 3rd International Workshop on Symbolic and Numeric Algorithms on Scientific Computing, SYNASC-2001 (2001)Google Scholar
  5. 5.
    Zaharie, D.: Recombination operators for evolutionary algorithms. In: Ivanchev, D., Todorov, M.D. (eds.) Proceedings of the 27th Summer School of Applications of Mathematics in Engineering and Economics, pp. 625–627 (2001)Google Scholar
  6. 6.
    Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In: Proceedings of 8th International Conference on Soft Computing, pp. 62–67 (2002)Google Scholar
  7. 7.
    Zaharie, D.: Parameter adaptation in differential evolution by controlling the population diversity. In: Petcu, D., et al (eds.) Proceedings of 4th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing, pp. 385–397 (2002)Google Scholar
  8. 8.
    Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Matouek, R., Omera, P. (eds.) Proceedings of Mendel’s 9th International Conference on Soft Computing, pp. 41–46 (2003)Google Scholar
  9. 9.
    Zaharie, D.: A comparative analysis of crossover variants in differential evolution. In: Proceedings-International Multiconference on Computer Science and Information Technology, vol. 2, pp. 172–181, Wisła, Poland (2007)Google Scholar
  10. 10.
    Zaharie, D.: Statistical properties of differential evolution and related random search algorithms. In: Brito, P. (eds.) Proceedings of the International Conference on Computational Statistics Porto, pp. 473–485 (2008)Google Scholar
  11. 11.
    Zaharie, D.: Differential evolution from theoretical analysis to practical insights. In: Proceeding of 19th International Conference on Soft Computing, Brno, Czech Republic, 26–28 June 2013Google Scholar
  12. 12.
    Jeyakumar, G., Shunmuga Velayutham, C.: A comparative study on theoretical and empirical evolution of population variance of differential evolution variants, SEAL 2010. LNCS 6457, pp. 75–79 (2010)Google Scholar
  13. 13.
    Beyer, H.G.: On the ‘Explorative Power’ of ES/EP like algorithms. In: Porto, V.W., Saravanan, N., Waagen, D.E., Eiben, A.E. (eds.) Proceedings of the 7th Annual Conference on Evolutionary Programming. Lecture Notes in Computer Science, vol. 1447–1998, pp. 323–334. Springer, Berlin (2008)Google Scholar
  14. 14.
    Beyer, H.G., Deb, K.: On the analysis of self adaptive evolutionary algorithms. Technical Report, CI-69/99, University of Dortmund (1999)Google Scholar
  15. 15.
    Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: A comparative study on differential evolution variants for global optimization. In: Genetic and Evolutionary Computation Conference (GECCO’06), pp. 485–492 (2006)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • S. Thangavelu
    • 1
  • G. Jeyakumar
    • 1
  • Roshni M. Balakrishnan
    • 1
  • C. Shunmuga Velayutham
    • 1
  1. 1.Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations