Advertisement

A Novel Fast FCM Clustering for Segmentation of Salt and Pepper Noise Corrupted Images

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Abstract

The conventional fuzzy C-means (FCM) is most frequently used unsupervised clustering algorithm for image segmentation. However, it is sensitive to noise and cluster center initialization. In order to overcome this problem, a novel fast fuzzy C-means (FFCM) clustering algorithm is proposed with the ability to minimize the effects of impulse noise by incorporating noise detection stage to the clustering algorithm during the segmentation process without degrading the fine details of the image. This method also improves the performance of the FCM algorithm by finding the initial cluster centroids based on histogram analysis, reducing the number of iterations. The advantages of the proposed method are: (1) Minimizes the effect of impulse noise during segmentation, (2) Minimum number of iterations to segment the image. The performance of the proposed approach is tested on different real time noisy images. The experiment results show that the proposed algorithm effectively segment the noisy image.

Keywords

Clustering Image segmentation Histogram Salt-and-pepper noise Fuzzy C-means Image processing 

References

  1. 1.
    Cheriet, M., Said, J.N., Suen, C.Y.: A recursive thresholding technique for image segmentation. IEEE Trans. Image Process. 7(6), 918–921 (1998)CrossRefGoogle Scholar
  2. 2.
    Warfield, S.K., Michael, K., Jolesz, F.A., Ron, K.: Adaptive, template moderated, spatially varying statistical classification. Med. Image Anal. 4(1), 43–55 (2000)CrossRefGoogle Scholar
  3. 3.
    Lalonde, M., Beaulieu, M., Gagnon, L.: Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans. Med. Imaging 21(11), 1193–1200 (2001)CrossRefGoogle Scholar
  4. 4.
    Seunghwan, Y., Rae-Hong, P.: Red-eye detection and correction using in painting in digital photographs. IEEE Trans. Consum. Electron. 55(3), 1006–1014 (2009)CrossRefGoogle Scholar
  5. 5.
    Mat-Isa, N.A., Mashor, M.Y., Othman, N.H.: Automatic seed based region growing for pap smear image segmentation. In: Kuala Lumpur International Conference on Biomedical Engineering, Kuala Lumpur, Malaysia (2002)Google Scholar
  6. 6.
    Paik, J.K., Park, Y.C., Park, S.W.: An edge detection approach to digital image stabilization based on tri-state adaptive linear neurons. IEEE Trans. Consum. Electron. 37(3), 521–530 (1991)CrossRefGoogle Scholar
  7. 7.
    Siyoung, Y., Donghyung, K., Jechang, J.: Fine edge-preserving deinterlacing algorithm for progressive display. IEEE Trans. Consum. Electron. 53(3), 1654–1662 (2009)Google Scholar
  8. 8.
    Algorri, M.E., Flores-Mangas, F.: Classification of anatomical structures in MR Brain images using fuzzy parameters. IEEE Trans. Biomed. Eng. 51, 1599–1608 (2004)CrossRefGoogle Scholar
  9. 9.
    Doulamis, A.D., Doulamis, N., Kollas, S.: Non-sequential video content representation using temporal variation of feature vectors. IEEE Trans. Consum. Electron. 46, 758–768 (2000)CrossRefGoogle Scholar
  10. 10.
    Nickel, K., Stiefelhagen, R.: Visual recognition of pointing gestures for human-robot interaction. Image Vis. Comput. 25, 1875–1884 (2007)CrossRefGoogle Scholar
  11. 11.
    Setnes, M.: Supervised fuzzy clustering for rule extraction. IEEE Trans. Fuzzy Syst. 8, 416–424 (2000)CrossRefGoogle Scholar
  12. 12.
    Sulaiman, S.N., Mat, N.A.: Isa: adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Trans. Consum. Electron. 56, 2661–2668 (2010)CrossRefGoogle Scholar
  13. 13.
    Sulaiman, S.N., Mat, N.A.: Isa : Denoising-based clustering algorithms for segmentation of low level salt-and-pepper noisecorrupted images. IEEE Trans. Consum. Electron. 56, 2702–2710 (2010)CrossRefGoogle Scholar
  14. 14.
    Mat-Isa, N.A., Mashor, M.Y., Othman, N.: Pap smear image segmentation using modified moving k-mean clustering. In: International Conference on Biomedical Engineering, Kuala Lumpur Malaysia (2002)Google Scholar
  15. 15.
    Mat-Isa, N.A., Mashor, M.Y., Othman, N.H., Sulaiman, S.N.: Application of moving k-means clustering for pap smear image processing. In: Proceeding of International Conference on Robotics, Vision, Information and Signal Processing, Penang, Malaysia (2002)Google Scholar
  16. 16.
    Mat-Isa, N.A., Samy, A.S., Ngah, U.K.: Adaptive fuzzy moving K-means algorithm for image segmentation. IEEE Trans. Consum. Electron. 55(4), 2145–2153 (2009)CrossRefGoogle Scholar
  17. 17.
    Toh, K.K.V., Ibrahim, H., Mahyuddin, M.N.: Salt-and-pepper noise detection and reduction using fuzzy switching median filter. IEEE Trans. Consum. Electron. 54(4), 1956–1961 (2008)CrossRefGoogle Scholar
  18. 18.
    Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)CrossRefMATHGoogle Scholar
  19. 19.
    Zhang, J.-H., Ha, M.H., Wu, J.: Implementation of rough fuzzy K-means clustering algorithm in Matlab. In: Proceedings of Ninth International Conference on Machine Learning and Cybernetics, July 2010Google Scholar
  20. 20.
    Luo, W.: Efficient removal of impulse noise from digital images. IEEE Trans. Consum. Electron. 52(2), 523–527 (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Toh, K.K.V., Isa, N.A.M.: Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process. Lett. 17(3), 281–284 (2010)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Information TechnologyGITAM Institute of Technology, GITAM UniversityVisakhapatnamIndia
  2. 2.Department of Computer Science and EngineeringANUCET, Acharya Nagarjuna UniversityGunturIndia

Personalised recommendations