Advertisement

Vision Based Traffic Personnel Hand Gesture Recognition Using Tree Based Classifiers

  • R. Sathya
  • M. Kalaiselvi Geetha
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Abstract

Human hand gestures can be used as an important communication tool for human computer interaction. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. This paper presents a novel and efficient framework for traffic personnel gesture recognition based on Cumulative Block Intensity Vector (CBIV) of n-frame cumulative difference. The experiment carried out on the real time traffic personnel action dataset using Random Forests (RF) and Decision Tree (J48). Experimental results denote the higher performance 97.83 % of the Random Forests classification, compared to the Decision Tree using 5-frame cumulative difference. The main contribution of this paper is the application of incremental tree based classifier techniques to the problem of identification of traffic personnel hand signals in video surveillance, based only on person hand movement.

Keywords

Gesture recognition Video surveillance Traffic hand signals Random forests Decision tree (J48) 

References

  1. 1.
    Johansson, G.: Visual perception of biological motion and a model for its analysis. Atten. Percept. Psychophys. 14, 201–211 (1973). doi: 10.3758/BF03212378 CrossRefGoogle Scholar
  2. 2.
    Kang, B., Choi, E., Kwon, S., Chung, M.K.: UFO-zoom: a new coupled map navigation technique using hand trajectories in the air. Int. J. Ind. Ergon. 43(1), 62–69 (2013)CrossRefGoogle Scholar
  3. 3.
    Chaquet, J.M., Carmona, E.J., Fernandez-Caballero, A.: A survey of video datasets for human action and activity recognition. J. Comput. Vis. Underst. 117(6), 633–659 (2013)Google Scholar
  4. 4.
    Raheja, J.L., Chaudhary, A., Maheshwari, S.: Hand gesture pointing location detection. Optik 125, 993–996 (2014)Google Scholar
  5. 5.
    Suau, X., Alcoverro, M., López-Méndez, A., Ruiz-Hidalgo, J., Casas, J.R.: Real-time fingertip localization conditioned on hand gesture classification. Image Vis. Comput. 32, 522–532 (2014)CrossRefGoogle Scholar
  6. 6.
    Chaudhary, A., Raheja, J.L., Das, K., Raheja, S.: Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey. Int. J. Comput. Sci. Eng. Surv. 2, 111–122 (2011)CrossRefGoogle Scholar
  7. 7.
    Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: A background subtraction algorithm for detecting and tracking vehicle. Expert Syst. 1619–1631 (2011)Google Scholar
  8. 8.
    Qingsong, X., Juan, S., Tiantian, L.: A detection and recognition method for prohibition traffic signs. In: International Conference on Image Analysis and Signal Processing (IASP), 2010, pp. 583–586. IEEE (2010)Google Scholar
  9. 9.
    Ren, Z., Yuan, J., Zhang, Z.: Robust hand gesture recognition based on finger-earth movers distance with a commodity depth camera. In: ACM-MM, pp. 1093–1096 (2011)Google Scholar
  10. 10.
    Ye, Y., Wu, Q., Zhexue Huang, J., Ng, M.K., Li, X.: Stratified sampling for feature subspace selection in random forests for high dimensional data. Pattern Recognit. 46, 769–787 (2013)Google Scholar
  11. 11.
    Chaaraoui, A.A., Climent-acrez, P., Flarez-Revuelta, F.: A review on vision techniques applied to Human behaviour analysis for ambient-assisted living. Expert Syst. Appl. 10873–10888 (2012)Google Scholar
  12. 12.
    Sathya, R., Geetha, M.K.: Human action recognition to understand hand signals for traffic surveillance. Elixir Int. J. Comput. Sci. Eng. 63, 18149–18156 (2013)Google Scholar
  13. 13.
    Arunnehru, J., Geetha, M.K.: Motion intensity code for action recognition in video using PCA and SVM. In: Mining Intelligence and Knowledge Exploration, pp. 70–81. Springer International Publishing, Berlin (2013)Google Scholar
  14. 14.
    Liu, Q., Zhuang, J., Ma, J.: Robust and fast pedestrian detection method for far infrared automotive driving assistance systems. Infrared Phys. Technol. 60, 288–299 (2013)Google Scholar
  15. 15.
    Ho, T.K.: Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp. 278–282 (1995)Google Scholar
  16. 16.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Breiman, L.: Bagging predictors, machine learning research: four current directions. AIM Mag. 18, 97–136 (1997)Google Scholar
  18. 18.
    Zbikowski, K., Grzegorzewski, P.: Stock trading with random forests, trend detection tests and force index volume indicators. Artif. Intell. Soft Comput. 441–452 (2013)Google Scholar
  19. 19.
    Xu, Y., Li, Z., Luo, L.: A study on feature selection for trend prediction of stock trading price. In: 2013 International Conference on Computational and Information Sciences, pp. 579–582 (2013)Google Scholar
  20. 20.
    Han, J., Kamber, M.: Data mining; concepts and techniques. Morgan Kaufmann Publishers, Burlington (2000)Google Scholar
  21. 21.
    Svoray, T., Michailov, E., Cohen, A., Rokah, L., Sturm, A.: Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf. Process 37, 607–619 (2011)CrossRefGoogle Scholar
  22. 22.
    Quinlan, J.R.: Introduction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  23. 23.
    Loh, W.Y., Shih, Y.S.: Split selection methods for classification trees. Stat. Sinica 7, 815–840 (1997)MathSciNetMATHGoogle Scholar
  24. 24.
    Kass, G.: An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 29(2), 119–127 (1980)CrossRefGoogle Scholar
  25. 25.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  26. 26.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, Burlington (1999)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringAnnamalai UniversityChidambaramIndia

Personalised recommendations