Advertisement

Character Recognition Using Firefly Based Back Propagation Neural Network

  • M. K. Sahoo
  • Janmenjoy Nayak
  • S. Mohapatra
  • B. K. Nayak
  • H. S. Behera
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Abstract

The use of artificial neural network technique has significantly improved the quality of pattern recognition day-by-day with better performance. After the evolution of optimization algorithms, it has given new directions for achieving efficient result. In this paper a firefly based back-propagation network has proposed for character recognition. The firefly algorithm is a nature inspired optimization algorithm and it is simulated into back-propagation algorithm to achieve faster and better convergence rate within few iteration. The characters are collected from system through mouse that are used for training and characters are collected from MS-Paint that are used for testing purpose. The performance is analyzed and it is observed that proposed method performs better and leads to converge in less number of iteration than back-propagation algorithm.

Keywords

ANN Back propagation Firefly Back propagation algorithm 

References

  1. 1.
    Hassoun, M.H.: Fundamentals of Artificial Neural Networks. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  2. 2.
    Kumar, G., Bhatia, P.K.: Neural network based approach for recognition of text images. Int. J. Comput. Appl. 62 (14), 0975–8887 (2013)Google Scholar
  3. 3.
    Devireddy, S.K., Apparao, S.: Hand written character recognition using back propagation network. J. Theoret. Appl. Inf. Technol. (2009)Google Scholar
  4. 4.
    Espana-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., Zamora-Martinez, F.: Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell. 33(4) (2011)Google Scholar
  5. 5.
    Yang, Y., et al.: English character recognition based on feature combination. Procedia Eng. 24, 159–164 (2011)CrossRefGoogle Scholar
  6. 6.
    Tuli, R.: Character recognition in neural network using back propagation. In: 3rd IEEE International Advance Computing Conference (2013)Google Scholar
  7. 7.
    Barve, S.: Optical character recognition using artificial neural network. Int. J. Adv. Technol. Eng. Res. 2(2) (2012). ISSN 2250-3536Google Scholar
  8. 8.
    Yi, H., Ji, G., Zheng, H.: Optimal Parameters of Bp Network for Character Recognition. IEEE (2012). doi: 10.1109/ICICEE.2012.465
  9. 9.
    Sharma, A., Chaudhary, D.R.: Character recognition using neural network. Int. J. Eng. Trends Technol. 4(4) (2013)Google Scholar
  10. 10.
    Choudhary, A., et al.: Off-line handwritten character recognition using features extracted from binarization technique. AASRI Procedia 4, 306–312 (2013)CrossRefGoogle Scholar
  11. 11.
    Richarz, J., et al.: Semi-supervised learning for character recognition in historical archive documents. Pattern Recogn. 47, 1011–1020 (2014)Google Scholar
  12. 12.
    De Stefano, C., et al.: A GA-based feature selection approach with an application to handwritten character recognition. Pattern Recogn. Lett. 3, 130–141 (2014)Google Scholar
  13. 13.
    Impedovo, S., et al.: Optical character recognition. Int. J. Pattern Recogn. Artif Intell. 5, 1–24 (1991)CrossRefGoogle Scholar
  14. 14.
    Das, V., Rajni, R.: Character recognition using neural network. Int. J. Adv. Trends Comput. Sci. Eng. 2(3) (2013)Google Scholar
  15. 15.
    Granieri, M.N., Stabile, F., Comelli, P.: Recognition of motor vehicle license plates in rear-view image. In: Jorge, L., Sanz, C. (eds.) Image Technology: Advances in Image processing. Multimedia an Machine Vision, p. 231. Springer, Berlin (1996)CrossRefGoogle Scholar
  16. 16.
    Deepa, S.N., Sumathi, S., Sivanandam, S.N.: Introduction to Neural Networks Using Matlab 6.0. Tata Mc-Graw Hill Publishing, NoidaGoogle Scholar
  17. 17.
    Nandy, S., Sarkar, P.P., Das, A.: Analysis of a nature inspired firefly algorithm based back propagation neural network training. Int. J. Comput. Appl. 43(22) (2012)Google Scholar
  18. 18.
    Mangal, M., Singh, M.P.: Handwritten english vowels recognition using hybrid evolutionary feed-forward neural network. Malays. J. Comput. Sci. 19(2) (2006)Google Scholar
  19. 19.
    Kosbatwar, S.P., Pathan, S.K.: Pattern association for character recognition by back propagation algorithm using neural network approach. Int. J. Comput. Sci. Eng. Surv. 3(1) (2012)Google Scholar
  20. 20.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)Google Scholar
  21. 21.
    Yang, X.S.: Firefly algorithms for multimodal optimization in: Stochastic algorithms: foundations and applications. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. Lecture Notes in Computer Science 5792, pp. 169–178. Springer, Berlin (2009)Google Scholar
  22. 22.
    Abshouri, A.A., Meybodi, M.R.: New Firefly Algorithm based on Multi Swarm & Learning Automata in Dynamic Environments. IEEE X-plore (2011)Google Scholar
  23. 23.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  24. 24.
    Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1, 164–171 (2011)Google Scholar
  25. 25.
    Nayak, J., Nanda, M., Nayak, K., Naik, B., Behera, H.S. :An improved firefly fuzzy c-means (FAFCM) Algorithm for clustering real world data sets. In: Smart Innovation, Systems and Technologies, vol. 27, pp. 339–348. Springer, Berlin (2014)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • M. K. Sahoo
    • 1
  • Janmenjoy Nayak
    • 1
  • S. Mohapatra
    • 1
  • B. K. Nayak
    • 1
  • H. S. Behera
    • 1
  1. 1.Department of Computer Science and EngineeringVeer Surendra Sai University of TechnologyBurla, SambalpurIndia

Personalised recommendations