Advertisement

Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 32)

Abstract

The Fuzzy c-means is one of the most popular ongoing area of research among all types of researchers including Computer science, Mathematics and other areas of engineering, as well as all areas of optimization practices. Several problems from various areas have been effectively solved by using FCM and its different variants. But, for efficient use of the algorithm in various diversified applications, some modifications or hybridization with other algorithms are needed. A comprehensive survey on FCM and its applications in more than one decade has been carried out in this paper to show the efficiency and applicability in a mixture of domains. Also, another intention of this survey is to encourage new researchers to make use of this simple algorithm (which is popularly called soft classification model) in problem solving.

Keywords

FCM Clustering 

References

  1. 1.
    Webb, A.: Statistical Pattern Recognition. Wiley, New Jersey (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)Google Scholar
  3. 3.
    Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)Google Scholar
  4. 4.
    Dunn, J.C.: A fuzzy relative ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1974)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bezdek, J.C.: Fuzzy mathematics in pattern classification, Ph.D. Dissertation. Applied Mathematics, Cornell University. Ithaca. New York (1973)Google Scholar
  6. 6.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). doi: 10.1016/S0019-9958(65)90241-X. ISSN 0019-9958
  7. 7.
    Bellman, R.E., Kalaba, R.A., Zadeh, L.A.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Ruspini, E.H.: A new approach to clustering. Inf. Control 15(1), 22–32 (1969)CrossRefMATHGoogle Scholar
  9. 9.
    Guoyao, F.: Optimization methods for fuzzy clustering. Fuzzy Sets Syst. 93, 301–309 (1998)CrossRefMATHGoogle Scholar
  10. 10.
    Ravi, V., Zimmermann, H.J.: Fuzzy rule based classification with feature selector and modified threshold accepting. Eur. J. Oper. Res. 123, 16–28 (2000)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefMATHGoogle Scholar
  12. 12.
    Ferreiraa, M.R.P., Carvalho, F.A.T.: Kernel fuzzy c-means with automatic variable weighting. Fuzzy Sets Syst. 237, 1–46 (2014)CrossRefGoogle Scholar
  13. 13.
    Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley (1999)Google Scholar
  14. 14.
    Lazaro, J., Arias, J., Martın, J.L., Cuadrado, C., Astarloa, A.: Implementation of a modified Fuzzy C-Means clustering algorithm for real-time applications. Microprocess. Microsyst. 29, 375–380 (2005)CrossRefGoogle Scholar
  15. 15.
    Icer, S.: Automatic segmentation of corpus collasum using Gaussian mixture modeling and Fuzzy C means methods. Comput. Methods Programs Biomed. 112, 38–46 (2013)CrossRefGoogle Scholar
  16. 16.
    Asyali, M.H., Colak, D., Demirkaya, O., Inan, M.S.: Gene expression profile classification: a review. Curr. Bioinform. 1, 55–73 (2006)CrossRefGoogle Scholar
  17. 17.
    Runkler, T.A., Katz, C.: Fuzzy clustering by particle swarm optimization. In: Proceedings of 2006 IEEE International Conference on Fuzzy Systems, pp. 601–608. Canada (2006)Google Scholar
  18. 18.
    Huang, M., Xia, Z., Wang, H., Zeng, Q., Wang, Q.: The range of the value for the fuzzifier of the fuzzy c-means algorithm. Pattern Recogn. Lett. 33, 2280–2284 (2012)CrossRefGoogle Scholar
  19. 19.
    Cannon, R.L., et al.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986)CrossRefMATHGoogle Scholar
  20. 20.
    Xie, W.X., Liu, J.Z.: A combine hard clustering algorithm and fuzzy clustering algorithm—fuzzy c-means clustering algorithm with two layers. Fuzzy Syst. Math. 2(6), 77–85 (1991)Google Scholar
  21. 21.
    Kamel, M.S., Selim, S.Z.: New algorithms for solving the fuzzy clustering problem. Pattern Recogn. 27(3), 421–428 (1994)CrossRefGoogle Scholar
  22. 22.
    Park, D.C., Dagher, I.: Gradient based fuzzy c-means (GBFCM) algorithm. Proc. IEEE Internat. Conf. Neural Networks 3, 1626–1631 (1994)Google Scholar
  23. 23.
    Pei, J.H., Fan, J.L., Xie, W.X.: A new efficient fuzzy clustering method: cutset of fuzzy c-means algorithm. Acta Electronica Sinica 26(2), 83–86 (1998). (in Chinese)Google Scholar
  24. 24.
    Wei, L.M., Xie, W.X.: Rival checked fuzzy c-means algorithm. Acta Electronica Sinica 28(7), 63–66 (2000). (in Chinese)Google Scholar
  25. 25.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21, 193–199 (2002)CrossRefGoogle Scholar
  26. 26.
    Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Pattern Recogn. Lett. 24, 1607–1612 (2003)CrossRefMATHGoogle Scholar
  27. 27.
    Chen, S.C., Zhang, D.Q.: Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B 34, 1907–1916 (2004)CrossRefGoogle Scholar
  28. 28.
    Dong, Y., Zhuang, Y., Chen, K., Tai, X.: A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets Syst. 157, 1760–1774 (2006)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Hung, W.L., Yang, M.S., Chen, D.H.: Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation. Pattern Recogn. Lett. 27, 424–438 (2006)CrossRefGoogle Scholar
  30. 30.
    Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)CrossRefGoogle Scholar
  31. 31.
    Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial biascorrection. Pattern Recogn. Lett. 29, 1713–1725 (2008)CrossRefGoogle Scholar
  32. 32.
    Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-means: integrating fuzzy and rough clustering. Pattern Recogn. 43, 1282–1291 (2010)CrossRefMATHGoogle Scholar
  33. 33.
    Xu, Z.S.: Intuitionistic fuzzy hierarchical clustering algorithms. J. Syst. Eng. Electron. 20(1), 90–97 (2009)Google Scholar
  34. 34.
    Kuhne, M., Togneri, R., Nordholm, S.: A novel fuzzy clustering algorithm using observation weighting and context information for reverberant blind speech separation. Signal Process. 90, 653–669 (2010)CrossRefGoogle Scholar
  35. 35.
    Xue, Z., Shang, Y., Feng, A.: Semi-supervised outlier detection based on fuzzy rough C-means clustering. Math. Comput. Simul. 80, 1911–1921 (2010)CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Geweniger, T., Zulke, D., Hammer, B., Villmann, T.: Median fuzzy c-means for clustering dissimilarity data. Neurocomputing 73, 1109–1116 (2010)CrossRefGoogle Scholar
  37. 37.
    Dovžan, D., Škrjanc, I.: Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Trans. 50, 159–169 (2011)CrossRefGoogle Scholar
  38. 38.
    Ji, Z.X., Sun, Q.S., Xia, D.S.: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput. Med. Imaging Graph. 35, 383–397 (2011)CrossRefGoogle Scholar
  39. 39.
    Horta, D., Andrade, I.C., Campello, R.J.G.B.: Evolutionary fuzzy clustering of relational data. Theoret. Comput. Sci. 412, 5854–5870 (2011)CrossRefMathSciNetMATHGoogle Scholar
  40. 40.
    Li, X., Wong, H.S., Wu, S.: A fuzzy minimax clustering model and its applications. Inf. Sci. 186, 114–125 (2012)CrossRefGoogle Scholar
  41. 41.
    Maraziotis, I.A.: A semi-supervised fuzzy clustering algorithm applied to gene expression data. Pattern Recogn. 45, 637–648 (2012)CrossRefMATHGoogle Scholar
  42. 42.
    Kannan, S.R., Ramathilagam, S., Devi, R., Hines, E.: Strong fuzzy c-means in medical image data analysis. J. Syst. Softw. 85, 2425–2438 (2012)CrossRefGoogle Scholar
  43. 43.
    Ji, Z., Sun, Q., Xia, Y., Chen, Q., Xia, D., Feng, D.: Generalized rough fuzzy c-means algorithm for brain MR image segmentation. Comput. Methods Programs Biomed. 108, 644–655 (2012)CrossRefGoogle Scholar
  44. 44.
    Xu, C., Zhang, P., Li, B., Wu, D., Fan, H.: Vague C-means clustering algorithm. Pattern Recogn. Lett. 34, 505–510 (2013)CrossRefGoogle Scholar
  45. 45.
    Fritz, H., Escudero, L.A.G., Iscar, M.: Robust constrained fuzzy clustering. Inf. Sci. 245, 38–52 (2013)CrossRefGoogle Scholar
  46. 46.
    Mei, J.P., Chen, L.: Link FCM: relation integrated fuzzy c-means. Pattern Recogn. 46, 272–283 (2013)CrossRefMATHGoogle Scholar
  47. 47.
    Lai, J.Z.C., Juan, E.Y.T., Lai, F.Z.C.: Rough clustering using generalized fuzzy clustering algorithm. Pattern Recogn. 46, 2538–2547 (2013)CrossRefGoogle Scholar
  48. 48.
    Qiu, C., Xiao, J., Yu, L., Han, L., Iqbal, M.N.: A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation. Pattern Recogn. Lett. 34, 1329–1338 (2013)CrossRefGoogle Scholar
  49. 49.
    Sancheza, M.A., Castillo, O., Castro, J.R., Melin, P.: Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)CrossRefGoogle Scholar
  50. 50.
    Lin, P.L., Huang, P.W., Kuo, C.H., Lai, Y.H.: A size-insensitive integrity-based fuzzy c-means method for data clustering. Pattern Recogn. 47, 2042–2056 (2014)CrossRefGoogle Scholar
  51. 51.
    Shamshirband, S., Amini, A., Anuar, N.B., Kiah, L.M., The, Y.W., Furnell, S.: D-FICCA: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. Measurement 55, 212–226 (2014)CrossRefGoogle Scholar
  52. 52.
    Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)CrossRefGoogle Scholar
  53. 53.
    Mingoti, S.A., Lima, J.O.: Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. Eur. J. Oper. Res. 174, 1742–1759 (2006)CrossRefMATHGoogle Scholar
  54. 54.
    Staiano, A., Tagliaferri, R., Pedrycz, W.: Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69, 1570–1581 (2006)CrossRefGoogle Scholar
  55. 55.
    Mukhopadhyay, A., Maulik, U.: Towards improving fuzzy clustering using support vector machine: application to gene expression data. Pattern Recogn. 42, 2744–2763 (2009)CrossRefMATHGoogle Scholar
  56. 56.
    Aydilek, I.B., Arslan, A.: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Inf. Sci. 233, 25–35 (2013)CrossRefGoogle Scholar
  57. 57.
    Tsekouras, G.E., Tsimikas, J.: On training RBF neural networks using input–output fuzzy clustering and particle swarm optimization. Fuzzy Sets Syst. 221, 65–89 (2013)CrossRefMathSciNetMATHGoogle Scholar
  58. 58.
    Sua, M.S., Chia, C.C., Chen, C., Chen, J.F.: Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach. Electr. Power Energy Syst. 61, 173–179 (2014)CrossRefGoogle Scholar
  59. 59.
    Hassen, D.B., Taleb, H., Yaacoub, I.B., Mnif, N.: Classification of chest lesions with using fuzzy c-means algorithm and support vector machines. Adv. Intell. Syst. Comput. 239, 319–328 (2014). doi: 10.1007/978-3-319-01854-6_33
  60. 60.
    Li, K., Li, P.: Fuzzy clustering with generalized entropy based on neural network. Lect. Notes Electr. Eng. 238, 2085–2091 (2014). doi: 10.1007/978-1-4614-4981-2_228 CrossRefGoogle Scholar
  61. 61.
    Fan, J., Li, J.: A fixed suppressed rate selection method for suppressed fuzzy c-means clustering algorithm. Appl. Math. 5, 1275–1283 (2014). doi: 10.4236/am.2014.58119 CrossRefGoogle Scholar
  62. 62.
    Bharill, N., Tiwari, A.: Handling big data with fuzzy based classification approach. Adv. Trends Soft Comput. Stud. Fuzziness Soft Comput. 312, 219–227 (2014). doi: 10.1007/978-3-319-03674-8_21 CrossRefGoogle Scholar
  63. 63.
    Karthikeyani, N., Visalakshi, S., Parvathavarthini, S., Thangavel, K.: An intuitionistic fuzzy approach to fuzzy clustering of numerical dataset. Adv. Intell. Syst. Comput. 246: 79–87 (2014). doi: 10.1007/978-81-322-1680-3_9
  64. 64.
    Looney, C.G.: Interactive clustering and merging with a new fuzzy expected value. Pattern Recogn. 35, 2413–2423 (2002)CrossRefMATHGoogle Scholar
  65. 65.
    Miyamoto, S.: Information clustering based on fuzzy multisets. Inf. Process. Manage. 39, 195–213 (2003)CrossRefMATHGoogle Scholar
  66. 66.
    Kim, W.D., Lee, K.H., Lee, D.: A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recogn. Lett. 25, 227–237 (2004)CrossRefGoogle Scholar
  67. 67.
    Nayak, J., Nanda, M., Nayak, K., Naik, B., Behera, H.S.: An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets. Smart Innov. Syst. Technol. 27, 339–348 (2014). doi: 10.1007/978-3-319-07353-8_40 CrossRefGoogle Scholar
  68. 68.
    Kong, X., Wang, R., Li, G.: Fuzzy clustering algorithms based on resolution and their application in image compression. Pattern Recogn. 35, 2439–2444 (2002)CrossRefMATHGoogle Scholar
  69. 69.
    Noordam, J.C., van den Broek, W.H.A.M., Buydens, L.M.C.: Multivariate image segmentation with cluster size insensitive fuzzy C-means. Chemometr. Intell. Lab. Syst. 64, 65–78 (2002)Google Scholar
  70. 70.
    Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40, 825–838 (2007)CrossRefMATHGoogle Scholar
  71. 71.
    Halberstadt, W., Douglas, T.S.: Fuzzy clustering to detect tuberculosis meningitis-associated hyper density in CT images. Comput. Biol. Med. 38, 165–170 (2008)CrossRefGoogle Scholar
  72. 72.
    Kannan, S.R., Ramathilagam, S., Sathya, A., Pandiyarajan, R.: Effective fuzzy c-means based kernel function in segmenting medical images. Comput. Biol. Med. 40, 572–579 (2010)CrossRefGoogle Scholar
  73. 73.
    Zhao, F., Jiao, L., Liu, H., Gao, X.: A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation. Signal Process. 91, 988–999 (2011)CrossRefMATHGoogle Scholar
  74. 74.
    He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recogn. 45, 3463–3471 (2012)CrossRefMATHGoogle Scholar
  75. 75.
    Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn. 47, 2454–2466 (2014)CrossRefGoogle Scholar
  76. 76.
    Jun, X., Yifan, T.: Research of brain MRI image segmentation algorithm based on FCM and SVM. In: The 26th IEEE Chinese Control and Decision Conference (2014 CCDC), pp. 1712–1716. doi: 10.1109/CCDC.2014.6852445
  77. 77.
    Balafar, M.A.: Fuzzy C-mean based brain MRI segmentation algorithms. Artif. Intell. Rev. 41(3), 441–449 (2014). doi: 10.1007/s10462-012-9318-2 CrossRefGoogle Scholar
  78. 78.
    Laishram, R., Kumar, W.K., Gupta, A., Prakash, K.V.: A novel MRI brain edge detection using PSOFCM segmentation and Canny Algorithm. In: IEEE International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC) (2014), pp. 398–401. doi: 10.1109/ICESC.2014.78
  79. 79.
    Noordam, J. C., van den Broek, W.H.A.M., Buydens, L.M.C.: Geometrically guided fuzzy c-means clustering for multivariate image segmentation. In: Proceedings on 15th International Conference on Pattern Recognition, 2000, vol. 1. IEEE (2000)Google Scholar
  80. 80.
    Liu, Q., Zhou, L., Sun, X.Y.: A fast fuzzy c-means algorithm for colour image segmentation. Int. J. Inf. Commun. Technol. 5(3/4), 263–271 (2013)CrossRefGoogle Scholar
  81. 81.
    Xiao, K., Ho, S. H., Bargiela, A: Automatic brain MRI segmentation scheme based on feature weighting factors selection on fuzzy c-means clustering algorithms with Gaussian smoothing. Int. J. Comput. Intell. Bioinform. Syst. Biol. 1(3):316–331 (2010) Google Scholar
  82. 82.
    Zeng, Z., Han, C., Wang, L., Zwiggelaar, R.: Unsupervised brain tissue segmentation by using bias correction fuzzy c-means and class-adaptive hidden markov random field modelling. Lect. Notes Electr. Eng. 269, 579–587 (2014). doi: 10.1007/978-94-007-7618-0_56 CrossRefGoogle Scholar
  83. 83.
    Lai, D.T.C., Garibaldi, J.M.: A preliminary study on automatic breast cancer data classification using semi-supervised fuzzy c-means. Int. J. Biomed. Eng. Technol. 13(4), 303–322 (2013)CrossRefGoogle Scholar
  84. 84.
    Hassan, M., Chaudhry, A., Khan, A., Kim, J.Y.: Carotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering. Comput. Methods Programs Biomed. 108(20–12), 1261–1276Google Scholar
  85. 85.
    Hassana, M., Chaudhry, A., Khan, A., Iftikhar, M.A.: Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images. Comput. Methods Programs Biomed. 113, 593–609 (2014)CrossRefGoogle Scholar
  86. 86.
    Vargas, D.M., Funes, F.J.G., Silva, A.J.R.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recogn. Lett. 34, 400–413 (2013)CrossRefGoogle Scholar
  87. 87.
    Zhu, C.J., Yang, S., Zhao, Q., Cui, S., Wen, N.: Robust semi-supervised Kernel-FCM algorithm incorporating local spatial information for remote sensing image classification. J. Indian Soc. Remote Sens. 42(1), 35–49 (2014)CrossRefGoogle Scholar
  88. 88.
    Yu, X.C., He, H., Hu, D., Zhou, W.: Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm. Sci. China Earth Sci. 57(6), 1306–1313 (2014). doi: 10.1007/s11430-013-4689 CrossRefGoogle Scholar
  89. 89.
    He, P., Shi, W., Zhang, H., Hao, M.: A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens. Lett. 5(4), 396–403 (2014). (Taylor & Francis)CrossRefGoogle Scholar
  90. 90.
    Belacel, N., Hansen, P., Mladenovic, N.: Fuzzy J-Means: a new heuristic for fuzzy clustering. Pattern Recogn. 35, 2193–2200 (2002)CrossRefMATHGoogle Scholar
  91. 91.
    Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recogn. 35, 2267–2278 (2002)CrossRefMATHGoogle Scholar
  92. 92.
    Pedrycz, W., Vukovich, G.: Fuzzy clustering with supervision. Pattern Recogn. 37, 1339–1349 (2004)CrossRefMATHGoogle Scholar
  93. 93.
    Pedrycz, W.: Fuzzy clustering with a knowledge-based guidance. Pattern Recogn. Lett. 25, 469–480 (2004)CrossRefGoogle Scholar
  94. 94.
    Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn. Lett. 25, 1123–1132 (2004)CrossRefGoogle Scholar
  95. 95.
    Pianykh, O.S.: Analytically tractable case of fuzzy c-means clustering. Pattern Recogn. 39, 35–46 (2006)CrossRefMATHGoogle Scholar
  96. 96.
    Park, D.-C.: Intuitive fuzzy C-means algorithm for MRI segmentation. In: 2010 International Conference on Information Science and Applications (ICISA), pp. 1–7. doi: 10.1109/ICISA.2010.5480541
  97. 97.
    Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29, 1713–1725 (2008)CrossRefGoogle Scholar
  98. 98.
    Kim, W.D., Lee, K.H., Lee, D.: A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recogn. Lett. 25, 227–237 (2004)CrossRefGoogle Scholar
  99. 99.
    ŁeRski, J.M., Owczarek, A.J.: A time-domain-constrained fuzzy clustering method and its application to signal analysis. Fuzzy Sets Syst. 155, 165–190 (2005)CrossRefGoogle Scholar
  100. 100.
    Ozer, M.: Fuzzy c-means clustering and Internet portals: a case study. Eur. J. Oper. Res. 164, 696–714 (2005)CrossRefMathSciNetMATHGoogle Scholar
  101. 101.
    Inan, Z.H., Kuntalp, M.: A study on fuzzy C-means clustering-based systems in automatic spike detection. Comput. Biol. Med. 37, 1160–1166 (2007)CrossRefGoogle Scholar
  102. 102.
    Ceccarelli, M., Maratea, A.: Improving fuzzy clustering of biological data by metric learning with side information. Int. J. Approximate Reasoning 47, 45–57 (2008)CrossRefMATHGoogle Scholar
  103. 103.
    Silva, S., Junior, M.D., Junior, V.L., Brennan, M.J.: Structural damage detection by fuzzy clustering. Mech. Syst. Signal Process. 22, 1636–1649 (2008)CrossRefGoogle Scholar
  104. 104.
    Chen, S.M., Chang, Y.C.: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. Inf. Sci. 180, 4772–4783 (2010)CrossRefMathSciNetGoogle Scholar
  105. 105.
    Iliadis, L.S., Vangeloudh, M., Spartalis, S.: An intelligent system employing an enhanced fuzzy c-means clustering model: application in the case of forest fires. Comput. Electron. Agric. 70, 276–284 (2010)CrossRefGoogle Scholar
  106. 106.
    Sudha, K.R., Raju, Y.B., Sekhar, A.C.: Fuzzy C-Means clustering for robust decentralized load frequency control of interconnected power system with generation rate constraint. Electr. Power Energy Syst. 37, 58–66 (2012)CrossRefGoogle Scholar
  107. 107.
    Yin, X.F., Khoo, L.P., Chong, Y.T.: A fuzzy c-means based hybrid evolutionary approach to the clustering of supply chain. Comput. Ind. Eng. 66, 768–780 (2013)CrossRefGoogle Scholar
  108. 108.
    Yan, Y., Chen, L., Tjhi, W.C.: Fuzzy semi-supervised co-clustering for text documents. Fuzzy Sets Syst. 215, 74–89 (2013)CrossRefMathSciNetGoogle Scholar
  109. 109.
    Azara, A.T., El-Said, S.A., Hassaniend, A.E.: Fuzzy and hard clustering analysis for thyroid disease. Comput. Methods Programs Biomed. 11(1), 1–16 (2013)CrossRefGoogle Scholar
  110. 110.
    Liu, L.F., Sun, Z.D., Zhou, X.Y., Han, J.F., Jing, B.,Pan, Y.Y., Zhao, H.T., Neng, Y.: A new algorithm of modified fuzzy c means clustering (FCM) and the prediction of carbonate fluid. In: 76th EAGE Conference and Exhibition (2014). doi: 10.3997/2214-4609.20140801
  111. 111.
    Hathaway, R.J., Bezdek, J.C., Hu, Y.K.: Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans. Fuzzy Syst. 8(5), 576–582Google Scholar
  112. 112.
    Wang, H.K., Hwang, J.C., Chang, P.L., Hsieh, F.H.: Function approximation using robust fuzzy-Grey CMAC method. Int. J. Model. Ident. Control 14(4), 227–234Google Scholar
  113. 113.
    Yang, M.S.: On asymptotic normality of a class of fuzzy c-means clustering procedures. Int. J. Gen. Syst. 22(4) (2007) Google Scholar
  114. 114.
    Yang, M.S., Yu, K.F.: On stochastic convergence theorems for the fuzzy c-means clustering procedure. Int. J. Gen. Syst. 16(4), 397–411 (2007)CrossRefGoogle Scholar
  115. 115.
    Kaushik, A., Soni, A.K., Soni, R.: Radial basis function network using intuitionist fuzzy C means for software cost estimation. Int. J. Comput. Appl. Technol. 47(1), 86–95 (2013)Google Scholar
  116. 116.
    Juang, C.F., Hsieh, C.D.: Fuzzy C-means based support vector machine for channel equalization. Int. J. Gen. Syst. 38(3) (2009)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Janmenjoy Nayak
    • 1
  • Bighnaraj Naik
    • 1
  • H. S. Behera
    • 1
  1. 1.Department of Computer Science Engineering and Information TechnologyVeer Surendra Sai University of TechnologyBurla, SambalpurIndia

Personalised recommendations