An Efficient PSO-GA Based Back Propagation Learning-MLP (PSO-GA-BP-MLP) for Classification

  • Chanda Prasad
  • S. Mohanty
  • Bighnaraj Naik
  • Janmenjoy Nayak
  • H. S. Behera
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 31)


In last few decades, Evolutionary computation and Swarm intelligence are two hot favorites for almost all types of researchers. Moreover, many contributions have been made in two directions: Genetic Algorithm (GA) and Particle Swarm optimization (PSO). But, some limitations in both the algorithms (complicated operator like crossover and mutation in GA and early convergence in PSO), are the major restricted boundaries for solving complex problems. In this paper, a hybridization of Particle swarm optimization and Genetic algorithm has been proposed with the back propagation learning based Multilayer perceptron neural network. The effectiveness of the proposed algorithm is shown through a no. of simulation steps with the help of the benchmark datasets considered from UCI machine learning repository. The performance of the algorithm is compared with other standard algorithms to show the steadiness and efficiency as well as statically significant.


Particle swarm optimization Genetic algorithm MLP Classification Data mining 


  1. 1.
    Holland, J.H.: Adaption in Natural and Artificial Systems. MIT Press, Cambridge (1975)MATHGoogle Scholar
  2. 2.
    Storn, R.: System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 3(1), 22–34 (1999)CrossRefGoogle Scholar
  3. 3.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 13(5), 973–990 (2009)CrossRefGoogle Scholar
  5. 5.
    Alatas, B., Akın, E.: FCACO: fuzzy classification rules mining algorithm with ant colony optimization, ICNC 2005. Lecture Notes in Computer Science, vol. 3612, pp. 787–797. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)CrossRefGoogle Scholar
  7. 7.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Chu, S., Tsai, P., Pan, J.: Cat swarm optimization. Lecture Notes in Computer Science, vol. 4099, pp. 854–858. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Pradhan, P.M., Panda, G.: Solving multiobjective problems using cat swarm optimization. Expert Syst. Appl. 39(3), 2956–2964 (2012)CrossRefGoogle Scholar
  10. 10.
    Krishnanand, K.N., Ghose, D.: Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent Grid Syst. 2(3), 209–222 (2006)MATHGoogle Scholar
  11. 11.
    Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wanga, L.M.: An improved GA and a novel PSO-GA-based hybrid algorithm. Inf. Process. Lett. 93, 255–261 (2005)CrossRefMATHGoogle Scholar
  12. 12.
    Dong, N., Wu, C.H., Ip, W.H., Chen, Z.Q., Chan, C.Y., Yung, K.L.: An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection. Comp. Math. Appl. 64(6), 1886–1902 (2012)Google Scholar
  13. 13.
    Liu, Hui, Tian, Hong-qi, Chen, Chao, Li, Yan-fei: An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Electr. Power Energy Syst. 52, 161–173 (2013)CrossRefGoogle Scholar
  14. 14.
    Ludermir, Teresa B., de Oliveira, W.R.: Particle swarm optimization of MLP for the identification of factors related to common mental disorders. Expert Syst. Appl. 40, 4648–4652 (2013)CrossRefGoogle Scholar
  15. 15.
    Al-geelania, N.A., Piah, M.A.M., Adzis, Z., Algeelani, M.A.: Hybrid regrouping PSO based wavelet neural networks for characterization of acoustic signals due to surface discharges on HV glass insulators. Appl. Soft Comput. 13, 4622–4632 (2013)Google Scholar
  16. 16.
    Sahoo, L. et al.: An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization. Swarm Evol. Comput. (2014).
  17. 17.
    Naik, B., Nayak, J., Behera, H.S.: A novel FLANN with a hybrid PSO and GA based gradient descent learning for classification. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing (FICTA). Advances in Intelligent Systems and Computing 327, vol. 1, pp. 745–754 (2014). doi:  10.1007/978-3-319-11933-5_84
  18. 18.
    Thakur, M.: A new genetic algorithm for global optimization of multimodal continuous functions. J. Comput. Sci. 5, 298–311 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kennedy, J. Eberhart, R.: Swarm Intelligence Morgan Kaufmann, 3rd edn. Academic Press, New Delhi (2001)Google Scholar
  20. 20.
    Hamedi, M., et al.: Comparison of Multilayer Perceptron and Radial Basis Function Neural Networks for EMG-Based Facial Gesture Recognition. The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Springer Singapore (2014)Google Scholar
  21. 21.
    Ndiaye, A., et al.: Development of a multilayer perceptron (MLP) based neural network controller for grid connected photovoltaic system. Int. J. Phys. Sci. 9(3), 41–47 (2014)CrossRefGoogle Scholar
  22. 22.
    Roy, M., et al.: Ensemble of multilayer perceptrons for change detection in remotely sensed images. Geosci. Remote Sens. Lett. IEEE 11(1), 49–53 (2014)CrossRefGoogle Scholar
  23. 23.
    Hassanien, A.E., et al.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14, 62–71 (2014)CrossRefGoogle Scholar
  24. 24.
    Aydin, K., Kisi, O.: Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks. Neural Comput. Appl. 24(3–4), 583–597 (2014)CrossRefGoogle Scholar
  25. 25.
    Velo, R., et al.: Wind speed estimation using multilayer perceptron. Energy Convers. Manage. 81, 1–9 (2014)CrossRefGoogle Scholar
  26. 26.
    Lee, S., Choeh, J.Y.: Predicting the helpfulness of online reviews using multilayer perceptron neural networks. Expert Syst. Appl. 41(6), 3041–3046 (2014)CrossRefGoogle Scholar
  27. 27.
    Azim, S., Aggarwal, S.: Hybrid model for data imputation: using fuzzy c means and multi layer perceptron. IEEE International Advance Computing Conference (IACC) (2014)Google Scholar
  28. 28.
    Chaudhuri, S., et al.: Medium-range forecast of cyclogenesis over North Indian Ocean with multilayer perceptron model using satellite data. Nat. Hazards 70(1), 173–193 (2014)CrossRefGoogle Scholar
  29. 29.
    Alcalá-Fdez, J., et al.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)Google Scholar
  30. 30.
    Bache, K., Lichman, M.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine (2013). []

Copyright information

© Springer India 2015

Authors and Affiliations

  • Chanda Prasad
    • 1
  • S. Mohanty
    • 1
  • Bighnaraj Naik
    • 2
  • Janmenjoy Nayak
    • 2
  • H. S. Behera
    • 2
  1. 1.School of Computer Science and EngineeringKalinga Institute of Industrial Technology UniversityBhubaneswarIndia
  2. 2.Department of Comp. Science Engineering and Information TechnologyVeer Surendra Sai University of TechnologySambalpurIndia

Personalised recommendations