Segmentation Google Earth Imagery Using K-Means Clustering and Normalized RGB Color Space

  • Nesdi Evrilyan Rozanda
  • M. Ismail
  • Inggih Permana
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 31)


Image segmentation is defined as: “the search for homogenous regions in an image and later the classification of these regions”. In this research, a remote sensing image, Pekanbaru city of Riau Province-Indonesia is provided for the green land segmentation. It is obtained by observing the surface of the earth using the Google Earth Imagery. To segment the green land of the given image, two different methods are used in this research, K-Means Clustering and Normalized RGB Color Space methods. This research is expected to have two clusters output: the spreading of green fields and not green fields. The result shows that the given Google Earth imagery can be segmented about 40.50 and 47.01 % pixels from all image pixels by K-Means Clustering and Normalized RGB Color Space respectively.


Google earth imagery Image segmentation K-Means clustering Normalized RGB color space 


  1. 1.
    Chipman, J., Kiefer, R.W., Lillesand, T.: Remote Sensing and Image Interpretation, 6th edn. Willey, Inc., USA (2007)Google Scholar
  2. 2.
    Ruzgiene, B., Xiang, Q.Y., Gecyte, S.: Rectification of satellite imagery from google earth: application for large scale city mapping. In: The 8th International Conference on Environmental Engineering, vol. 3, pp. 1451–1454. Vilnius, Lithuania (2011)Google Scholar
  3. 3.
    Li, Z., Liu, Z., Shi, W.: Semiautomatic airport runway extraction using a line-finder-aided level set evolution. IEEE J. Sel. Topics Appl. Earth Obs. 99, 1–13 (2014)Google Scholar
  4. 4.
    Aher, M., Pradhan, S., Dangdawate, Y.: Rainfall estimation over roof-top using land-cover classification of google earth images. In: International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC), pp. 111–116. Nagpur, India (2014)Google Scholar
  5. 5.
    Coralini, A., Gidazzoli, A., Malfetti, P.: Cloud computing and virtual heritage: the social media-oriented paradigm experienced at cineca. In: IEEE 3rd Symposium on Network Cloud Computing and Applications (NCCA), pp. 121–124, Rome, Italy (2014)Google Scholar
  6. 6.
    Sahin, K., Ulusoy, I.: Automatic Multi-scale segmentation of high spatial resolution satellite images using waterhseds. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2505–2508, Melbourne (2013)Google Scholar
  7. 7.
    Almeer, M.H.: Vegetation extraction from free google earth images of deserts using a robust BPNN approach in HSV Space. Int. J. Adv. Res. Comput. Commun. Eng. 2(5), 1–8 (2012)Google Scholar
  8. 8.
    Janssen, I., Rosu, A.: Measuring sidewalk distances using google earth. J. BMC Med. Res. Methodol. 12(1), 1–10 (2012)Google Scholar
  9. 9.
    Ploton, P., et al.: Assessing aboveground tropical forest biomass using google earth canopy images. In: Ecol. Soc. Am. Ecolo. Appl. 22(3), 993–1003 (2012)Google Scholar
  10. 10.
    Stepanus, R.: Analisis kebutuhan ruang terbuka hijau di kota Pekanbaru. Master Thesis Institute of Pertanian Bogor, Bogor, Indonesia (2006)Google Scholar
  11. 11.
    Chinki, C., Soni. C., Khurshid, A.A.: An approach to image segmentation using K-Means clustering algorithm. Int. J. Info. Technol. (IJIT) 1(1), 11–17 (2012)Google Scholar
  12. 12.
    Narayana, M.: Comparison between euclidean distance metric and SVM for CBIR using level set features. Int. J. Eng. Sci. Technol. (IJEST) 4(1), 56–66 (2012)Google Scholar
  13. 13.
    Ravindra, S., Sangolli, H., Rajeshwari, K.: Segmentation of google map images based on color features. In: Proceedings of International Conference on Communication, Computation, Management and Nanotechnology (ICN), pp 77–80 (2011)Google Scholar
  14. 14.
    Moreno, F., Andrade-Cetto, J., Sanfeliu, A.: Localization of human faces fusing color segmentation and depth from stereo. In: Proceedings of the 8th IEEE International Conference on Emerging Technologies and Factory Automation, vol. 2, pp. 527–535. Antibes, France (2001)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Nesdi Evrilyan Rozanda
    • 1
  • M. Ismail
    • 1
  • Inggih Permana
    • 1
  1. 1.Information System DepartmentState Islamic University of Sultan Syarif Kasim RiauPekanbaruIndonesia

Personalised recommendations