Advertisement

Optimal Power Flow Using PSO

  • Prashant Kumar
  • Rahul Pukale
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 31)

Abstract

This paper presents an efficient technique to solve optimal power flow based on PSO in which the power transmission loss function is used as the problem objective while considering both the real and reactive as a sub problem. The proposed method is used for solving the non-linear optimization problems while minimizing the objective voltage stability margin is also maintained. The proposed technique is tested on IEEE 57 bus system.

Keywords

Particle swarm optimization Power loss minimization Reactive power Voltage control Voltage stability 

References

  1. 1.
    Carpienter, J.: Contribution e l’etude do Dispatching Economique, Bulletin Society FrancaiseGoogle Scholar
  2. 2.
    Dommel, H., Tinny, W.: Optimal power flow solution. IEEE Trans. Power Apparatus Syst. PAS-87(10), 1866–1876 (1968)CrossRefGoogle Scholar
  3. 3.
    Alsac, O., Stott, B.: Optimal load flow with steady state security. IEEE Trans. Power Apparatus Syst. PAS-93, 745–751 (1974)Google Scholar
  4. 4.
    Shoults, R., Sun, D.: Optimal power flow based on P-Q decomposition. IEEE Trans. Power Apparatus Syst. PAS-101(2), 397–405 (1982)CrossRefGoogle Scholar
  5. 5.
    Happ, H.H.: Optimal power dispatch: a comprehensive survey. IEEE Trans. Power Apparatus Syst. PAS-96, 841–854 (1977)CrossRefGoogle Scholar
  6. 6.
    Mamandur, K.R.C.: Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization. IEEE Trans. Power Apparatus Syst. 3185–3193 (1981) Google Scholar
  7. 7.
    Habiabollahzadeh, H., Luo, G.X., Semlyen, A.: Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology. IEEE Trans. Power Syst. PWRS-4(2), 530–537 (1989)CrossRefGoogle Scholar
  8. 8.
    Burchett, R.C., Happ, H.H., Vierath, D.R.: Quadratically convergent optimal power flow. IEEE Trans. Power Apparatus Syst. PAS-103, 3267–3276 (1984)CrossRefGoogle Scholar
  9. 9.
    Aoki, K., Nishikori, A., Yokoyama, R.T.: Constrained load flow using recursive quadratic programming. IEEE Trans. Power Syst. 21, 8–16 (1987)CrossRefGoogle Scholar
  10. 10.
    Abou El-Ela, A.A., Abido, M.A.: Optimal operation strategy for reactive power control modelling. Simul. Control A 41(3), 19–40 (1992)Google Scholar
  11. 11.
    Stadlin, W., Fletcher, D.: Voltage versus reactive current model for dispatch and control. IEEE Trans. Power Apparatus Syst. PAS-101(10), 3751–3758 (1982)CrossRefGoogle Scholar
  12. 12.
    Mota-Palomino, R., Quintana, V.H.: Sparse reactive power scheduling by a penalty-function linear programming technique. IEEE Trans. Power Syst. 1(3), 31–39 (1986)CrossRefGoogle Scholar
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4(27), 1942–1948 (1995)Google Scholar
  14. 14.
    Sinha, A.K., Hazarika, D.: A comparative study of voltage stability indices in a power system. Int. J. Electr. Power Energy Syst. 22(8), 589–596 (2000)CrossRefGoogle Scholar
  15. 15.
    Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of 7th Annual Conference Evolutionary Program, pp. 591–600 (1998)Google Scholar
  16. 16.
    Angeline, P.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Proceedings of 7th Annual Conference Evolutionary Program, pp. 601–610 (1998)Google Scholar
  17. 17.
    Saraswat, A., Saini, A.: Multi-objective optimal reactive power dispatch considering voltage stability in power systems using HFMOEA. Eng. Appl. Artif. Intell. (EAAI) 26(1), 390–404 (2013)Google Scholar
  18. 18.
    Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal power flow by Newton approach. IEEE Trans. Power Apparatus Syst. PAS-103(10), 2864–2875 (1984)CrossRefGoogle Scholar
  19. 19.
    Santos, A., da Costa, G.R.: Optimal power flow solution by Newton’s method applied to an augmented lagrangian function. IEE Proc. Gener. Transm. Distrib. 142(1), 33–36 (1995)CrossRefGoogle Scholar
  20. 20.
    Rahli, M., Pirotte, P.: Optimal load flow using sequential unconstrained minimization technique (SUMT) method under power transmission losses minimization. Electr. Power Syst. Res. 52, 61–64 (1999)CrossRefGoogle Scholar
  21. 21.
    Yan, X., Quintana, V.H.: Improving an interior point based OPF by dynamic adjustments of step sizes and tolerances. IEEE Trans. Power Syst. 14(2), 709–717 (1999)CrossRefGoogle Scholar
  22. 22.
    Momoh, J.A., Zhu, J.Z.: Improved interior point method for OPF problems. IEEE Trans. Power Syst. 14(3), 1114–1120 (1999)CrossRefGoogle Scholar
  23. 23.
    Lai, L.L., Ma, J.T.: Improved genetic algorithms for optima power flow under both normal and contingent operation states. Int. J. Electr. Power Energy Syst. 19(5), 287–292 (1997)CrossRefGoogle Scholar
  24. 24.
    Yuryevich, J., Wong, K.P.: Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst. 4, 1245–1250 (1999)CrossRefGoogle Scholar
  25. 25.
    Ozcan, E., Mohan, C.: Analysis of a simple particle swarm optimization system. Intell. Eng. Syst. Artif. Neural Networks 8, 253–258 (1998)Google Scholar
  26. 26.
    Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, Washington D.C., pp. 1951–1957 (1999)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Depatrment of Electrical EngineeringAMGOIKolhapurIndia

Personalised recommendations