Data Mining Approach for Modeling Risk Assessment in Computational Grid

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 33)


Assessing Risk in a computational grid environment is an essential need for a user who runs applications from a remote machine on the grid, where resource sharing is the main concern. As Grid computing is the ultimate solution believed to meet the ever-expanding computational needs of organizations, analysis of the various possible risks to evaluate and develop solutions to resolve these risks is needed. For correctly predicting the risk environment, we made a comparative analysis of various machine learning modeling methods on a dataset of risk factors. First we conducted an online survey with international experts about the various risk factors associated with grid computing. Second we assigned numerical ranges to each risk factor based on a generic grid environment. We utilized data mining tools to pick the contributing attributes that improve the quality of the risk assessment prediction process. The empirical results illustrate that the proposed framework is able to provide risk assessment with a good accuracy.


Grid computing Risk assessment Feature selection Data mining 


  1. 1.
    Foster, I.K., Nick, C., Jeffrey, M., Tuecke, S.: The physiology of the grid. In: Grid Computing: Making the Global Infrastructure a Reality, pp. 217–249 (2003)Google Scholar
  2. 2.
    Zhu, Z., Ond, Y.-S., Dash, M.: Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(1), 70–76 (2007)Google Scholar
  3. 3.
    Butt, A.R.A., Kapadia, S., Figueiredo, N.H., Fortes, R.J., José, A.B.: Grid-computing portals and security issues. J. Parallel Distrib. Comput. 63(10), 1006–1014 (2003)Google Scholar
  4. 4.
    Chakrabarti, A.: Taxonomy of grid security issues. In: Grid Computing Security, pp. 33–47. Springer, Berlin (2007)Google Scholar
  5. 5.
    Chakrabarti, A., Damodaran, A., Sengupta, S.: Grid computing security: a taxonomy. IEEE Secur. Priv. 6(1), 44–51 (2008)Google Scholar
  6. 6.
    Smith, M., Engel, M., Friese, T., Bernd, F.: Security issues in on-demand grid and cluster computing. In: Sixth IEEE International Symposium on Cluster Computing and the Grid, CCGRID 06, pp. 14–24 (2006a)Google Scholar
  7. 7.
    Smith, M., Friese, T., Engel, M., Freisleben, B.: Countering security threats in service-oriented on-demand grid computing using sandboxing and trusted computing techniques. J. Parallel Distrib. Comput. 66(9), 1189–1204 (2006b)Google Scholar
  8. 8.
    Cody ES, Raj Rao, Raghav H Upadhyaya, Shambhu: Security in grid computing: a review and synthesis. Decis Support Syst 44 (4) (2008) 749-764Google Scholar
  9. 9.
    Kar, S., Sahoo, B.: An Anamaly detection system for DDOS attack in grid computing. Int. J. Comput. Appl. Eng. Technol. Sci. (IJ-CA-ETS) 1(2), 553–557 (2009)Google Scholar
  10. 10.
    Kussul, O., Kussul, N., Skakun, S.: Assessing security threat scenarios for utility-based reputation model in grids. Comput. Secur. 34, 1–15 (2013)Google Scholar
  11. 11.
    Syed, R.S., Syrame, M., Bourgeois, J.: Protecting grids from cross-domain attacks using security alert sharing mechanisms. Future Gener. Comput. Syst. 29, 536–547 (2012)Google Scholar
  12. 12.
    Carlsson, C., Robert, F.: Risk assessment in grid computing. In: Possibility for Decision, pp. 145–165. Springer, Berlin (2011)Google Scholar
  13. 13.
    Lee, H.M.C., Jin, K.S., Lee, S.H., Lee, D.-W., Jung, W.G., Yu, S.Y., Chang, H.: A fault tolerance service for QoS in grid computing. In: Computational Science—ICCS 2003, pp. 286–296. Springer, Berlin (2003)Google Scholar
  14. 14.
    Rana, O.F., Martijn, W., Quillinan, T.B., Brazier, F., Cojocarasu, D.: Managing violations in service level agreements. In: Grid Middleware and Services, pp. 349–358. Springer, Berlin (2008)Google Scholar
  15. 15.
    Syed, R.H., Syrame, M., Julien, B.: Protecting grids from cross-domain attacks using security alert sharing mechanisms. Future Gener. Comput. Syst. 29(2), 536–547 (2013)Google Scholar
  16. 16.
    Parrilli, D.: Legal issues in grid and cloud computing. In: Stanoevska-Slabeva, K., Wozniak, T., Ristol, S. (ed) Grid and Cloud Computing, pp. 97–118. Springer, Berlin (2010). doi: 10.1007/978-3-642-05193-7_7
  17. 17.
    Bishop, M.: What is computer security? IEEE Secur. Priv. 1(1), 67–69 (2003)CrossRefGoogle Scholar
  18. 18.
    Selvi, R.K., Kavitha, V.: Authentication in grid security infrastructure-survey. Procedia Eng. 38, 4030–4036 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, H., Khoshgoftaar, T.M., Seliya, N.: How many software metrics should be selected for defect prediction? In: FLAIRS Conference (2011)Google Scholar
  20. 20.
    Wu, C.-H.S., Su, W.-H., Ho, Y.-W.: A study on GPS GDOP approximation using support-vector machines. IEEE Trans. Instrum. Meas. 60(1), 137–145 (2011)Google Scholar
  21. 21.
    Bellotti, T., Ilia, N., Yang, M., Gammerman, A.: Feature selection. In: Conformal Prediction for Reliable Machine Learning, pp. 115–130. Morgan Kaufmann, Boston (2014). doi:
  22. 22.
    Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Désir, C., Petitjean, C., Heutte, L., Salaün, M., Thiberville, L.: Classification of endomicroscopic images of the lung based on random subwindows and extra-trees. IEEE Trans. Biomed. Eng. 59(9), 2677–2683 (2012)Google Scholar
  25. 25.
    Rokach, L.: Ensemble methods in supervised learning. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 959–979. Springer, Berlin (2010)Google Scholar
  26. 26.
    Zhang, L.S., Nagaratnam, P.: Random forests with ensemble of feature spaces. Pattern Recognit. 47, 3429–3437 (2014)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologySudan University of Science and TechnologyKhartoumSudan
  2. 2.Machine Intelligence Research Labs (MIR Labs)WashingtonUSA
  3. 3.IT4Innovations—Center of ExcellenceVSB—Technical University of OstravaOstravaCzech Republic

Personalised recommendations