Evaluation of Fitness Functions for Swarm Clustering Applied to Gene Expression Data

  • P. K. Nizar Banu
  • S. Andrews
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 33)


Clustering problem is being studied by many of the researchers using swarm intelligence. However, the search space is not carried out entirely randomly; a proper fitness function is required to determine the next step in the search space. This paper studies Particle Swarm Optimization (PSO) based clustering with two different fitness functions namely Xie-Beni and Davies-Bouldin indices for brain tumor gene expression dataset. Clustering results are validated using Mean Absolute Error (MAE) and Dunn Index (DI). To analyze function of genes, genes that have similar expression patterns should be grouped and the datasets should be presented to the physicians in a meaningful way. High usability of algorithm and the encouraging results suggests that swarm clustering (PSO based clustering) with Davies-Bouldin index as fitness functions with respect to Dunn index can be a practical tool for analyzing gene expression patterns.


Swarm clustering PSO Xie-Beni Davies-Bouldin Gene clustering 


  1. 1.
    Bryan, K.: P´adraig cunningham, nadia bolshakova: application of simulated annealing to the biclustering of gene expression data. IEEE Trans. Inf Technol. Biomed. 10, 519–525 (2006)CrossRefGoogle Scholar
  2. 2.
    Eisen, M.B., et al.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868 (U.S.A. 1998)Google Scholar
  3. 3.
    Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. 96, 2907–2912 (U.S.A. 1999)Google Scholar
  4. 4.
    Tavazoie, S., Hughes, D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999)CrossRefGoogle Scholar
  5. 5.
    Senthilnath, J., Das, V., Omkar, S.N., Mani, V.: Clustering using levy flight cuckoo search. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Advances in Intelligent Systems and Computing, vol. 202, pp. 66–75 (2013) Google Scholar
  6. 6.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.: Swarm Intelligence, 1st edn. Morgan Kaufmann, San Francisco (2001)Google Scholar
  8. 8.
    Izakian, H., Abraham, A., Snášel, V.: Metaheuristic based scheduling meta-tasks in distributed heterogeneous computing systems. Sensors (Basel) 9, 5339–5350 (2009)CrossRefGoogle Scholar
  9. 9.
    Samadzadegan, F., Abootalebi, A., Alizadeh, A.: Evaluation of the potential of swarm clustering techniques in hyperspectral data. GIS Ostrava 1, 24–27 (2010)Google Scholar
  10. 10.
    Abraham, A., Das, S., Roy, S.: Swarm Intelligence Algorithms for Data Clustering. Soft Computing for Knowledge Discovery and Data Mining, pp. 279–313. Springer, Berlin (2008)CrossRefGoogle Scholar
  11. 11.
    Das, S., Abraham, A., Sarkar, S.K.: A hybrid rough set–particle swarm algorithm for image pixel classification. In: Proceedings of the Sixth International Conference on Hybrid Intelligent Systems, pp. 26–32 (2006)Google Scholar
  12. 12.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Calgiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1991)CrossRefGoogle Scholar
  13. 13.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96, 6745–6750 (USA 1999)Google Scholar
  14. 14.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)CrossRefGoogle Scholar
  15. 15.
    Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L.: Roland Somogyi.: Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA Neurobiol. 95, 334–339 (1998)CrossRefGoogle Scholar
  16. 16.
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  17. 17.
    Jiang, D., Pei, J., Zhang, A.: DHC: A density-based hierarchical clustering method for time series gene expression data. In Proceedings of BIBE2003: 3rd IEEE International Symposium on Bioinformatics and Bioengineering, pp. 393–400. Bethesda, Maryland (2003)Google Scholar
  18. 18.
    Nizar Banu, P.K., Andrews, S.: Informative gene selection—an evolutionary approach. In: Proceedings of International Conference on Current Trends in Information Technology (CTIT), pp. 129–134 (2013)Google Scholar
  19. 19.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000)CrossRefGoogle Scholar
  20. 20.
    Dembele, D., Kastner, P.: Fuzzy c-means method for clustering microarray data. Bioinformatics 19, 973–980 (2003)CrossRefGoogle Scholar
  21. 21.
    Kim, S.Y., Choi, T.M., Bae, J.S.: Fuzzy types clustering for microarray data. Int. J. Comput. Intell. 2, 12–15 (2005)Google Scholar
  22. 22.
    Nizar Banu, P.K., Hannah Inbarani, H.: An analysis of gene expression data using penalized fuzzy c-means approach. Int. J. Commun. Comput. Innov. 1, 101–113 (2011)Google Scholar
  23. 23.
    Lu, Y., Lu, S., Fotouhi, F., Deng, Y., Brown, S.: Fast genetic K-means algorithm and its application in gene expression data analysis. Technical Report TR-DB-06-2003, (2003)
  24. 24.
    Shu, G., Zeng, B., Chen, Y., Smith, O.: Performance assessment of kernel density clustering for gene expression profile data. Comp. Funct. Genomics 4, 287–299 (2003)CrossRefGoogle Scholar
  25. 25.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2006) ISBN 1-55860-901-6Google Scholar
  26. 26.
    Raskutti, B., Leckie, C.: An evaluation of criteria for measuring the quality of clusters. In: Proceedings of 16th International Joint Conference on Artificial Intelligence, vol. 2, pp. 905–910 (1999)Google Scholar
  27. 27.
    Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3, 370–379 (1995)CrossRefGoogle Scholar
  28. 28.
    Davies, D.L., Bouldin, D.W.: Cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 95–104 (1979)Google Scholar
  29. 29.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)CrossRefMATHGoogle Scholar
  30. 30.
    De Castro, P.A.D., de França, O.F., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to perform collaborative filtering. In: Proceedings of the Seventh International Conference on Intelligent Systems Design and Applications, pp. 421–426 (2007)Google Scholar
  31. 31.
    Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybern 4, 95–104 (1974)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.B. S. Abdur Rahman UniversityChennaiIndia
  2. 2.Mahendra Engineering CollegeNamakkalIndia

Personalised recommendations