A New (n, n) Blockcipher Hash Function Using Feistel Network: Apposite for RFID Security

  • Atsuko Miyaji
  • Mazumder Rashed
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 33)


In this paper, we proposed a new (n, n) double block length hash function using Feistel network which is suitable for providing security to the WSN (wireless sensor network) device or RFID tags. We use three calls of AES-128 (E 1, E 2, E 3) in a single blockcipher E′ so that the efficiency rate is 0.33. Surprisingly we found that the security bound of this scheme is better than other famous (n, n) based blockcipher schemes such as MDC-2, MDC-4, MJH. The collision resistance (CR) and preimage resistance (PR) security bound are respectively by O(2 n ) and O(22n ). We define our new scheme as JAIST according to our institute name.


AES Deal cipher model Collision security Preimage security 


  1. 1.
    Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.: The Preimage Security of Double-Block-Length Compression Functions. LNCS. ASIACRYPT, vol. 7073, pp. 233–251. Springer, Berlin (2011)Google Scholar
  2. 2.
    Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. LNCS, CRYPTO, vol. 2442, pp. 320–335. Springer, Berlin (2002) Google Scholar
  3. 3.
    Black, J.A., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based hash functions from PGV. J. Cryptol. 23, 519–545 (2010)Google Scholar
  4. 4.
    Bogdanov A., Leander G., Paar C., Poschmann A., Robshaw, M.J.B., Seurin, Y.: Hash Functions and RFID Tags: Mind the Gap. LNCS, CHES, vol. 5154, pp. 283–299. Springer, Berlin (2008)Google Scholar
  5. 5.
    Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: Collision Resistant Double-Length Hashing. LNCS, PROVSEC, vol. 6402, pp. 102–118. Springer, Berlin (2010)Google Scholar
  6. 6.
    Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: A Highly Secure Double Length Compression Function. LNCS, ACISP, vol. 7372, pp. 152–165. Springer, Berlin (2012)Google Scholar
  7. 7.
    Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. LNCS, FSE, vol. 4047, pp. 210–225. Springer, Berlin (2006)Google Scholar
  8. 8.
    Jesang, L., Seokhie, H., Jaechul, S., Haeryong, P.: A New Double-Block-Length Hash Function Using Feistel Structure. LNCS, ISA, vol. 5576, pp. 11–20. Springer, Berlin (2009)Google Scholar
  9. 9.
    Kaps, J.P., Sunar, B.: Energy Comparison of AES and SHA-1 for Ubiquitous Computing. LNCS, Emerging Directions in Embedded and Ubiquitous Computing, vol. 4097, pp. 372–381. Springer, Berlin (2006)Google Scholar
  10. 10.
    Knudsen, L., Preneel, B.: Fast and Secure Hashing Based on Codes. LNCS, CRYPTO, vol. 1294, pp. 485–498. Springer, Berlin (1997)Google Scholar
  11. 11.
    Lai, X., Massey, X.: Hash Function Based on Block Ciphers. LNCS, EUROCRYPT, vol. 658, pp. 55–70. Springer, Berlin (1993)Google Scholar
  12. 12.
    Lee, J., Kwon, D.: The security of abreast-DM in the ideal cipher model. IEICE Trans. 94-A(1), 104–109 (2011)CrossRefGoogle Scholar
  13. 13.
    Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. LNCS, CT-RSA, vol. 6558, pp. 213–236. Springer, Berlin (2011)Google Scholar
  14. 14.
    Lee, J., Kapitanova, K., Son, S.H.: The price of security in wireless sensor networks. Comput. Netw. 54(17), 2967–2978 (2010)CrossRefGoogle Scholar
  15. 15.
    Lee, J., Stam, M., Steinberger, J.: The Collision Security of Tandem-DM in the Ideal Cipher Model. LNCS, CRYPTO, vol. 6841, pp. 561–577. Springer, Berlin (2011)Google Scholar
  16. 16.
    Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography, 5th edn. CRC Press, Boca Raton (2001)Google Scholar
  17. 17.
    Mennink, B.: Optimal Collision Security in Double Block Length Hashing with Single Length Key. LNCS, ASIACRYPT, vol. 7658, pp. 526–543. Springer, Berlin (2012)Google Scholar
  18. 18.
    Ozen, O., Stam, M.: Another Glance at Double-Length Hashing. LNCS. Cryptography and Coding, vol. 5291, pp. 176–201. Springer, Berlin (2009)Google Scholar
  19. 19.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 128134, 656–715 (1949)Google Scholar
  20. 20.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. LNCS, EUROCRYPT, vol. 3494, pp. 1–18. Springer, Berlin (2005)Google Scholar
  21. 21.
    Wang, X., Lai, X., Yu, X.: Finding Collisions in the Full SHA-1. LNCS, CRYPTO, vol. 3621, pp. 17–36. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Japan Advanced Institute of Science and TechnologyNomi-ShiJapan

Personalised recommendations