Maximum Likelihood DOA Estimation in Wireless Sensor Networks Using Comprehensive Learning Particle Swarm Optimization Algorithm

  • Srinivash Roula
  • Harikrishna Gantayat
  • T. Panigrahi
  • G. Panda
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 33)


Direction of arrival (DOA) estimation is one of the challenging problem in wireless sensor networks. Several methods based on maximum likelihood (ML) criteria have been established in literature. Generally, to obtain the ML solutions, the DOAs must be estimated by optimizing a complicated nonlinear multimodal function over a high-dimensional problem space. Comprehensive learning particle swarm optimization (CLPSO) based solution is proposed here to compute the ML functions and explore the potential of superior performances over traditional PSO algorithm. Simulation results confirms that the CLPSO-ML estimator is significantly giving better performance compared to conventional method like MUSIC in various scenarios at less computational costs.


Wireless sensor networks Maximum likelihood DOA estimation Comprehensive learning particle swarm optimization 


  1. 1.
    Ziskind, I., Wax, M.: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 36, 1553–1560 (1988)Google Scholar
  2. 2.
    Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)CrossRefGoogle Scholar
  3. 3.
    Capon, J.: High-resolution frequency–wavenumber spectrum analysis. Proc. IEEE 57, 1408–1418 (1969)CrossRefGoogle Scholar
  4. 4.
    Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13, 67–94 (1996)CrossRefGoogle Scholar
  5. 5.
    Noel, M.M., Joshi, P.P., Jannett, T.C.: Improved maximum likelihood estimation of target position in wireless sensor networks using particle swarm optimization. In: Third International Conference on Information Technology: New Generations vol. 0, pp. 274–279 (2006)Google Scholar
  6. 6.
    Li, M., Lu, Y.: Maximum likelihood DOA estimation in unknown colored noise fields. IEEE Trans. Aerosp. Electron. Syst. 44, 1079–1090 (2008)CrossRefGoogle Scholar
  7. 7.
    Chung, P.J., Böhme, J.F.: Doa estimation using fast EM and SAGE algorithms. Signal Process 82, 1753–1762 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Rodriguez, J., Ares, F., Moreno, E., Franceschetti, G.: Genetic algorithm procedure for linear array failure correction. Electron. Lett. 36, 196–198 (2000)CrossRefGoogle Scholar
  9. 9.
    Li, M., Lu, Y.: A refined genetic algorithm for accurate and reliable DOA estimation with a sensor array. Wirel. Pers. Commun. 43, 533–554 (2007)CrossRefGoogle Scholar
  10. 10.
    Panigrahi, T., Rao, D.H., Panda, G., Mulgrew, B., Majhi, B.: Maximum likelihood DOA estimation in distributed wireless sensor network using adaptive particle swarm optimization. In: ACM International Conference on Communication, Computing and Security (ICCCS2011) pp. 134–136 (2011)Google Scholar
  11. 11.
    Panigrahi, T., Panda, G., Majhi, B.: Maximum likelihood source localization in wireless sensor network using particle swarm optimization. Int. J. Signal Imaging Syst. Eng. 6, 83–90 (2013)CrossRefGoogle Scholar
  12. 12.
    Panigrahi, T., Panda, G., Mulgrew, B., Majhi, B.: Distributed doa estimation using clustering of sensor nodes and diffusion PSO algorithm. Swarm Evol. Comput. 9, 47–57 (2013)Google Scholar
  13. 13.
    Panigrahi, T., Panda, G., Mulgrew, B.: Distributed bearing estimation techniques using diffusion particle swarm optimization algorithm. IET Wireless Sens. Syst. 2, 385–393 (2012)CrossRefGoogle Scholar
  14. 14.
    Liang, J., Qin, A., Suganthan, P., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10, 281–295 (2006)CrossRefGoogle Scholar
  15. 15.
    Trees, H.V.: Optimum array processing. 1em plus 0.5em minus 0.4em. Wiley-Interscience Publication, New York (2002)Google Scholar
  16. 16.
    Jaffer, A.G.: Maximum likelihood direction finding of stochastic sources: a separable solution. In: Proceedings of ICASSP, vol. 5, pp. 2893–2896 (1988) Google Scholar
  17. 17.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Conference Neural Network, vol. IV, pp. 1942–1948 (1948) Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Srinivash Roula
    • 1
  • Harikrishna Gantayat
    • 1
  • T. Panigrahi
    • 1
  • G. Panda
    • 2
  1. 1.Department of ECENational Institute of Science and TechnologyBerhampurIndia
  2. 2.School of Electrical SciencesIndian Institute of Technology BhubaneswarOdishaIndia

Personalised recommendations