Advertisement

Boolean Operations on Free Form Shapes in a Level Set Framework

  • V. R. Bindu
  • K. N. Ramachandran Nair
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 33)

Abstract

Shape modeling is an important constituent of both computer graphics and computer vision research. This paper proposes an efficient shape modeling scheme using the active geometric deformable models, for implementing solid modeling techniques on free form shapes. A fast and computationally efficient narrow band level set algorithm is proposed for reducing the overall computational cost. When compared to traditional geometric modeling, the proposed level set model can easily handle topology changes, is free of edge connectivity and mesh quality problems and provides the advantages of implicit models, supporting straightforward solid modeling operations on complex structures of unknown topology. Using this model boolean operations have been implemented on arbitrary shapes extracted from both synthetic and real image data including some low contrast medical images, with promising results.

Keywords

Shape modeling Level sets Narrow band Boolean operations Geometric deformable models 

References

  1. 1.
    Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Agoston, M.K.: Computer Graphics and Geometric Modeling. Springer, London (2005)Google Scholar
  3. 3.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis 22, 61–79 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Chopp, D.L.: Computing minimal surfaces via level set curvature flow. J. Comput. Phys. 106, 77–91 (1993)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gomes, J., Faugeras, O.: Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11, 209–223 (2000)CrossRefGoogle Scholar
  8. 8.
    Han, X., Xu, C., Prince, J.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25, 755–768 (2003)CrossRefGoogle Scholar
  9. 9.
    Jain, M.K.: Numerical Solutions of Differential Equations. Wiley, New York (1979)Google Scholar
  10. 10.
    Kachouie, N.N., Fieguth, P.: A narrow band level set method with dynamic velocity for neural stem cell cluster segmentation, image analysis and recognition. Lect. Notes. Comput. Sci. 3656, 1006–1013 (2005)Google Scholar
  11. 11.
    Kass, M., Witkin, A.: Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)CrossRefGoogle Scholar
  12. 12.
    Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations I: the components of two dimensional shape and the reaction-diffusion space. Int. J. Comput. Vis. 15, 189–224 (1995)CrossRefGoogle Scholar
  13. 13.
    Li, C., Chenyang, X., Gui, C., Fox, M.D.: Level set evolution without re-initialization: A New Variational Formulation. IEEE Conf. Proc. Comput. Vis. Pattern Recognit.1063-6919/05 (2005)Google Scholar
  14. 14.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)CrossRefGoogle Scholar
  15. 15.
    Museth, K.: An efficient level set toolkit for visual effects. In: SIGGRAPH’09: SIGGRAPH Talks, pp. 1–1. ACM, New York (2009)Google Scholar
  16. 16.
    Museth, K., Breen, D.E., Whitaker, R.T., Mauch, S., Johnson, D.: Algorithms for interactive editing of level set models. Int. J. Eurographics Assoc. Comput. Graph. Forum. 24(4), 821–841 (2005)CrossRefGoogle Scholar
  17. 17.
    Nielsen, M.B., Museth, K.: Dynamic tubular grid: an efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26(3), 261–299 (2006)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)Google Scholar
  19. 19.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging. Vision and Graphics. Springer, New York (2003)MATHGoogle Scholar
  20. 20.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Rosenthal, P., Molchanov, V., Linsen, L.: A narrow band level set method for surface extraction from unstructured point-based volume data. In: Proceedings of WSCG, The 18th international conference on computer graphics, Visualization and Computer Vision. pp. 73–80. UNION Agency—Science Press, Plzen, Czech Republic (2010)Google Scholar
  22. 22.
    Rosenthal, P., Linsen, L.: Smooth surface extraction from unstructured point-based volume data using PDEs. IEEE Trans. Vis. Comput. Graph. 14(6), 1531–1546 (2008)CrossRefGoogle Scholar
  23. 23.
    Rossignac, T.R., Requicha, A.A.G.: Solid modeling. In: Webster, J. (ed.) Encyclopedia of Electrical and Electronics Engineering. Wiley, New York (1999)Google Scholar
  24. 24.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  25. 25.
    Vemuri B., Chen Y.: Joint image registration and segmentation. Geometric Level Set Methods in Imaging, Vision, and Graphics pp. 251–269. Springer, New York (2003)Google Scholar
  26. 26.
    Whitaker, R.T.: A level-set approach to 3D reconstruction from range data. Int. J. Comput. Vis. 3, 203–231 (1998)CrossRefGoogle Scholar
  27. 27.
    Whitaker, R.T., Breen, D., Museth, K., Soni, N.: Segmentation of biological volume datasets using a level-set framework. In: Chen, M., Kaufman, A. (eds.) Volume Graphics. pp. 249–263. Springer, Vienna (2001)Google Scholar
  28. 28.
    Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.School of Computer SciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Department of Computer Science and EngineeringViswajyothi College of EngineeringMuvattupuzhaIndia

Personalised recommendations