Advertisement

Short Term Hydro Thermal Scheduling Using Invasive Weed Optimization Technique

  • A. K. Barisal
  • R. C. Prusty
  • S. S. Dash
  • S. K. Kisan
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 33)

Abstract

This paper presents an efficient and reliable new invasive weed optimization algorithm to solve scheduling of hydro-thermal systems with cascaded reservoirs. A multi chain cascaded hydro-thermal systems with non-linear relationship between water discharge rate, power generation and net head is considered. The water transport delay between cascaded reservoirs, prohibited operating zones, valve point loading effects and transmission losses are also considered. The feasibility of the proposed method is demonstrated in one standard test system consisting of four cascaded hydro units and an equivalent thermal unit. The findings of the proposed method are better than the results of other established methods reported in literature in terms of quality of solution and convergence characteristics.

Keywords

Hydrothermal scheduling Cascade reservoir Invasive weed optimization Valve point loading effect 

References

  1. 1.
    Yang, J.S., Chen, N.: Short term hydro thermal coordination using multi-pass dynamic programming. IEEE Trans. Power Syst. 4(3), 1050–1056 (1989)CrossRefGoogle Scholar
  2. 2.
    Chang, S., Chen, C., Fung, I., Luh, P.B.: Hydroelectric generation scheduling with an effective differential dynamic programming. IEEE Trans. Power Syst. 5(3), 737–743 (1990)CrossRefGoogle Scholar
  3. 3.
    Liang, R., Hsu, Y.: Scheduling of hydroelectric generation units using artificial neural networks. IEE Proc. Gener. Transm. Distrib. 141(5), 452–458 (1994)CrossRefGoogle Scholar
  4. 4.
    Wong, K.P., Wong, Y.W.: Short term hydrothermal scheduling: part 1. Simulated annealing approach. IEE Proc. Gener. Transm. Distrib. 141(5), 497–501 (1994)CrossRefGoogle Scholar
  5. 5.
    Nenad, T.: A coordinated approach for real-time short term hydro scheduling. IEEE Trans. Power Apparatus Syst. 11(4), 1698–1704 (1996)CrossRefGoogle Scholar
  6. 6.
    Orero, S.O., Irving, M.R.: A genetic algorithm modeling framework and solution technique for short term optimal hydro thermal scheduling. IEEE Trans. Power Syst. 13(2), 501–518 (1998)CrossRefGoogle Scholar
  7. 7.
    Hota, P.K., Chakrabarti, R., Chattopadhyay, P.K.: Short term hydro thermal scheduling through evolutionary technique. EPSR 52, 189–196 (1999)Google Scholar
  8. 8.
    Naresh, R., Sharma. J.: Short term hydro scheduling using two phase neural network. Int. J. Electr. Power Energy Syst. 24(7), 583–590 (2002)CrossRefGoogle Scholar
  9. 9.
    Sinha, N., Chakrabarti, R., Chattopadhyay, P.K.: Fast evolutionary technique for short term hydrothermal scheduling. IEEE Trans. Power Syst. 18(1), 214–219 (2003)CrossRefGoogle Scholar
  10. 10.
    Basu, M.: An interactive fuzzy satisfying method based on evolutionary programming technique for multi-objective short term hydro thermal scheduling. Electr. Power Syst. Res. 69(2–3), 277–285 (2004)CrossRefGoogle Scholar
  11. 11.
    Basu, M.: A simulated annealing–based goal attainment method for economic emission load dispatch of fixed head hydro thermal power system. Int. J. Electr. Power Energy Syst. 27(2), 147–153 (2005)CrossRefGoogle Scholar
  12. 12.
    Kumar, S., Naresh. R.: Efficient real coded genetic algorithm to solve the non-convex hydro thermal scheduling problem. Int. J. Electr. Power Energy Syst. 29(10), 738–747 (2007)CrossRefGoogle Scholar
  13. 13.
    Lakshminarasimman, L., Subramanian, S.: Short term scheduling of hydro thermal power system with cascaded reservoirs by using modified differential evolution. IEE Proc. Gener. Transm. Distrib. 153(6), 693–700 (2006)CrossRefGoogle Scholar
  14. 14.
    Hota, P.K., Barisal, A.K., Chakrabarti, R.: An improved PSO technique for short term optimal hydrothermal scheduling. Electr. Power Syst. Res. 79(7), 1047–1053 (2009)CrossRefGoogle Scholar
  15. 15.
    Mandal, K.K., Chakraborty, N.: Short term combined economic emission scheduling of hydro thermal system with cascaded reservoir using particle swarm optimization technique. Appl. Soft Comput. 11(1), 1295–1302 (2011)CrossRefGoogle Scholar
  16. 16.
    Roy, P.K., Mandal, D.: Quasi-oppositional biogeography-based optimization for multi-objective optimal power flow. Electr. Power. Compont. Syst. 43(1), 1443–1452 (2011)Google Scholar
  17. 17.
    Swain, R.K., Barisal, A.K., Hota, P.K., Chakrabarti, R.: Short term hydro thermal scheduling using clonal selection algorithm. Int. J. Electr. Power Syst. 33(3), 647–656 (2011)CrossRefGoogle Scholar
  18. 18.
    Liao, X., Zhou, J., Zhang, R., Zhang, Y.: An adaptive artificial bee colony algorithm for long term economic dispatch in cascaded hydropower systems. Int. J. Electr. Power Syst. 43(1), 1340–1345 (2012)CrossRefGoogle Scholar
  19. 19.
    Mandal, K.K., Chakraborty, N.: Differential evolution technique-based short term economic generation scheduling of hydrothermal systems. Electr. Power Syst. Res. 78(11), 1972–1979 (2008)CrossRefGoogle Scholar
  20. 20.
    Roy, P.K.: Teaching learning based optimization for short term hydro thermal scheduling problem considering valve point effect and prohibited discharge constraint. Int. J. Electr. Power Energy Syst. 53, 10–19 (2013)CrossRefGoogle Scholar
  21. 21.
    Basu, M.: Improved differential evolution for short term hydro thermal scheduling. Int. J. Electr. Power Energy Syst. 58, 91–100 (2014)CrossRefGoogle Scholar
  22. 22.
    Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Elsevier Ecol. Inf 1(4), 355–366 (2006)CrossRefGoogle Scholar
  23. 23.
    Sepehri, R.H., Lucas, C.: A recommender system based on invasive weed optimization algorithm. In: IEEE congr. evol. comput. CEC (2007)Google Scholar
  24. 24.
    Wood, A.J., Wollenberg, B.F.: Power Generation Operation and Control. Wiley, New York (1984)Google Scholar
  25. 25.
    Carvalloh, M.F., Soares, S.: An efficient hydrothermal scheduling algorithm. IEEE Trans. PWRS 4, 537–542 (1987)Google Scholar
  26. 26.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • A. K. Barisal
    • 1
  • R. C. Prusty
    • 1
  • S. S. Dash
    • 1
  • S. K. Kisan
    • 1
  1. 1.Department of Electrical EngineeringVeer Surendra Sai University of TechnologyBurlaIndia

Personalised recommendations