Skip to main content

Plant Metabolomics: An Overview of Technology Platforms for Applications in Metabolism

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

The science of plant metabolomics has revolutionised the underlying platform of research on biological systems. The integration of plant metabolomics with allied branches, namely, system biology, biostatistics and in silico biology, has emerged as significant advancement in comprehensive metabolic profiling of phytomolecules in plant. Further, metabolomics strategies with high level of compositional specificity dealing with both intra- and inter-level organisation of the organism have achieved the predefined standards with overwhelming response. The present chapter entails the achievements and challenges associated with research on plant metabolomics, beginning with a brief introduction on plant metabolomics as interdisciplinary field and recent approaches employed for profiling of plant metabolites. Further, the chapter describes the omics strategies involved in metabolome research and various analytical techniques employed for detection and quantification of plant metabolites. The application ranging from metabolic engineering to abiotic stress response and from in vitro studies to application in functional genomics highlights the rising significance of plant metabolomics as a functional genomics tool. Although studies on plant metabolome have emerged as prospective strategies and contributed tremendously to its growth in recent years, some of the major challenges associated need to be addressed for the science of plant metabolomics to flourish and strengthen in future. Metabolomics is a relatively newer approach aimed at improving understanding of metabolic networks and the subsequent biochemical compositions of the plants and other biological organisms. The important aspects relevant to metabolomics are presented, and perspectives of metabolomics exploitation in the future are outlined. As such, metabolomics is providing new dimensions in the study of systems biology, enabling the in-depth understanding of the intra- and extracellular interactions of plant cells. Metabolomics is also developing into a valuable tool that can be used to monitor and assess gene function and to characterise post-genomic processes from a broad perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant 132:117–135

    CAS  PubMed  Google Scholar 

  • Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Banyai W, Mii M, Supaibulwatana K (2010) Enhancement of artemisinin content and biomass in Artemisia annua by exogenous GA3 treatment. Plant Growth Regul 63:45–54

    Google Scholar 

  • Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138:1058–1070

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    CAS  PubMed  Google Scholar 

  • Beuerle T, Schwab W (1999) Metabolic profile of linoleic acid in stored apples: formation of 13\(R)-hydroxy-9(Z), 11(E)-octadecadienoic acid. Lipids 34:375–380

    CAS  PubMed  Google Scholar 

  • Bharti SK, Bhatia A, Tewari SK, Sidhu OP, Roy R (2011) Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L.) Dunal. Magn Reson Chem 49:659–667

    CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    CAS  PubMed  Google Scholar 

  • Birkemeyer C, Kolasa A, Kopka J (2003) Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A 993:89–102

    CAS  PubMed  Google Scholar 

  • Boccard J, Rutledge DN (2013) A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock omics data fusion. Anal Chim Acta 69:30–39

    Google Scholar 

  • Boros LG, Lerner MR, Morgan DL, Taylor SL, Smith BJ, Postier RG, Brackett DJ (2005) [1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats. Pancreas 31:337–343

    CAS  PubMed  Google Scholar 

  • Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK, Mishra B, Srivastava AK, Sangwan NS (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66C:150–158

    Google Scholar 

  • Butelli E, Titta L, Giorgioetal M (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    CAS  PubMed  Google Scholar 

  • Calvenzani V, Martinelli M, Lazzeri V (2010) Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: flavonoid profiling and gene expression. Planta 231:755–765

    CAS  PubMed  Google Scholar 

  • Catchpole GS, Beckman M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A 102:14458–14462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ceulemans E, Hubert M, Rousseeuw P (2013) Robust multilevel simultaneous component analysis. Chemom Lab Intell Syst 129:1–20

    Google Scholar 

  • Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Roy R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71:1085–1094

    CAS  PubMed  Google Scholar 

  • Chaurasiya ND, Uniyal GC, Lal P, Mishra LN, Sangwan NS, Tuli R, Sangwan RS (2007) Analysis of withanolides in root and leaf of Withania somnifera by HPLC with photodiode array and evaporating light scattering detection. Phytochem Anal 19:148–154

    Google Scholar 

  • Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha, Withania somnifera L. (Dunal). Plant Cell Rep 31:1889–1897

    CAS  PubMed  Google Scholar 

  • Cheung HY, Lai WP, Cheung MS, Leung FM, Hood DJ, Fong WF (2003) Rapid and simultaneous analysis of some bioactive components in Eucommia ulmoides by capillary electrophoresis. J Chromatogr A 989:303–310

    CAS  PubMed  Google Scholar 

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512

    PubMed  Google Scholar 

  • Coleman RA, Lee DP (2004) Enzymes of triglyceride synthesis and their regulation. Prog Lipid Res 43:134–176

    CAS  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1250–1318

    Google Scholar 

  • Deacon J (2005) Fungal biology. Blackwell Publishers, Cambridge, MA, p 342. ISBN 1-4051-3066

    Google Scholar 

  • Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    CAS  PubMed  Google Scholar 

  • Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293

    CAS  PubMed  Google Scholar 

  • Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533

    PubMed Central  CAS  PubMed  Google Scholar 

  • El-Khateeb MA (1994) Effect of some growth regulators on growth, fruit yield and essential oil in dill plant. Bull Fac Sci Cairo Univ 45:187–205

    Google Scholar 

  • Facchini PJ, Bird DA, St-Pierre B (2004) Can Arabidopsis make complex alkaloids? Trends Plant Sci 9:116–122

    CAS  Google Scholar 

  • Fan Z, Liu E, Xu B (2011) Weighted principal component analysis. Artif Intell Comput Intell 7004:569–574

    Google Scholar 

  • Farooqi AHA, Shukla YN, Sharma S, Bansal RP (1994) Relationship between gibberellin and cytokinin activity and flowering in Rosa damascena Mill. Plant Growth Regul 14:109–113

    Google Scholar 

  • Ferreira JFS, Gonzalez JM (2008) Analysis of underivatized artemisinin and related sesquiterpene lactones by high-performance liquid chromatography with ultraviolet detection. Phytochem Anal 20:91–97

    Google Scholar 

  • Fett-Neto AG, DiCosmo F, Reynolds WF, Sakata K (1992) Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Biotechnology 10:12–15

    Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    CAS  PubMed  Google Scholar 

  • Fiehn O, Weckwerth W (2003) Deciphering metabolic networks. Eur J Biochem 270:579–588

    CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    CAS  PubMed  Google Scholar 

  • Fiehn O, Kloska S, Altmann T (2001) Integrated studies on plant biology using multiparallel techniques. Curr Opin Biotechnol 12:82–86

    CAS  PubMed  Google Scholar 

  • Ganjewala D, Kumar S, Asha Devi S, Ambika K (2010) Advances in cyanogenic glycosides biosynthesis and analyses in plants: a review. Acta Biol Szeged 54:1–14

    Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    CAS  Google Scholar 

  • Goodacre R (2005) Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J Exp Bot 56:245–254

    CAS  PubMed  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De-Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci U S A 100:8595–8600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gray GR, Heath D (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiol Plant 124:236–248

    CAS  Google Scholar 

  • Guo Y, Hastie T, Tibshirani R (2007) Regularized discriminant analysis and its application in microarray. Biostatistics 8:86–100

    PubMed  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468

    CAS  PubMed  Google Scholar 

  • Holzl G, Dormann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–243

    PubMed  Google Scholar 

  • Jackson JE (1991) A user’s guide to principal components. Wiley, New York. ISBN 1-58025-493-4

    Google Scholar 

  • Jing F, Zhang L, Li M, Tang Y, Wang Y, Wang Y, Wang Q, Pan Q, Wang G, Tang K (2009) Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 64:319–323

    CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94–101

    PubMed Central  PubMed  Google Scholar 

  • Jones P, Messner B, Nakajima J, Schaffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    CAS  PubMed  Google Scholar 

  • Joy IO, Olukemi OA, Yadav RK, Chanotiya CS, Ogbonnia SA, Sangwan NS (2013) A new source of elemol rich essential oil and existence of multicellular oil glands in leaves of the Dioscorea species. Sci World J 2013:Article ID 943598, 6 pages. http://dx.doi.org/10.1155/2013/943598

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keurentjes JJB, Fu JY, de Vos CHR, Lommen A, Hall RD, Bino RJ, van der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    CAS  PubMed  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress. J Exp Bot 58:415–424

    CAS  PubMed  Google Scholar 

  • Kjaer A, Verstappen F, Bouwmeester H, Ivarsen E, Frette X, Christensen LP, Grevsen K, Jensen M (2013) Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress. Planta 237:955–966

    CAS  PubMed  Google Scholar 

  • Klamt S, Stelling J, Ginkel M, Gilles ED (2003) Flux analyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19:261–269

    CAS  PubMed  Google Scholar 

  • Kohonen T, Honkela T (2011) Kohonen network. Scholarpedia, 2:15–68, Retrieved 24 Sept 2012

    Google Scholar 

  • Kondrak M, Marincs F, Antal F, Juhasz Z, Banfalvi Z (2012) Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol 12:74–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krizevski RLE (2009) Digitizing the metabolome. J Exp Bot 60:3–4

    CAS  PubMed  Google Scholar 

  • Kushwaha AK, Sangwan NS, Tripathi S, Sangwan RS (2013) Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene 516:238–247

    CAS  PubMed  Google Scholar 

  • Kushwaha AK, Sangwan NS, Trivedi PK, Mishra LN, Sangwan RS (2014) Tropine forming tropinine reductase gene from Withania somnifera: biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue wide gene expression patterns. PLoS One 8:744–777

    Google Scholar 

  • Kyung-Hee J, Sang-Soo K, Cha-Yong C, Jang Ryol L (1994) Development of two stage culture process by optimization of inorganic salts for improving catharanthine production in hairy root cultures of Catharanthus roseus. J Ferment Bioeng 77:57–61

    Google Scholar 

  • Larson NB, Jenkins GD, Larson MC, Vierkant RA, Sellers TA, Phelan CM, Schildkraut JM, Sutphen R, Pharoah PP, Gayther SA, Wentzensen N et al (2014) Kernel canonical correlation analysis for assessing gene-gene interactions and application to ovarian cancer. Eur J Hum Genet 22:126–131. doi:10.1038/ejhg.2013.69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande-Casteele SRF, Inze D, Covello PS, Deforce DLD, Gossens A (2010) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189

    PubMed  Google Scholar 

  • Maesschalck RD, Candolfi AD, Massart L, Heuerding S (1999) Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemom Intell Lab Syst 47:65–77

    Google Scholar 

  • Maitra S, Yan J (2008) Principle component analysis and partial least squares: two dimension reduction techniques for regression. In: Paper presented at Casualty Actuarial Society, Discussion Paper Program, Seattle, pp 79–90

    Google Scholar 

  • Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, Cheang MC, Dunn SE, Hayes M, van de Rijn M, Bajdik C, Gilks CB (2004) Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res 15:6143–6151

    Google Scholar 

  • Mannan A, Liu C, Arsenault PR, Towler MJ, Vail DR, Lorence A, Weathers PJ (2010) DMSO triggers the generation of ROS leading to an increase in artemisinin and dihydroartemisinic acid in Artemisia annua shoot cultures. Plant Cell Rep 29:143–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marja K, Caldentey O, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179

    Google Scholar 

  • Markuszewski MJ, Otsuka K, Terabe S, Matsuda K, Nishioka T (2003) Analysis of carboxylic acid metabolites from the tricarboxylic acid cycle in Bacillus subtilis cell extract by capillary electrophoresis using an indirect photometric detection method. J Chromatogr A 1010:113–121

    CAS  PubMed  Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    CAS  PubMed  Google Scholar 

  • Mendes P (2002) Emerging bioinformatics for the metabolome. Brief Bioinform 3:134–145

    CAS  PubMed  Google Scholar 

  • Michalopoulos D, Hu C-K (2002) An error back-propagation artificial neural networks application in automatic car license plate recognition. Dev Appl Artif Intell 2358:1–8

    Google Scholar 

  • Miller JC, Miller JN (1993) Statistics for analytical chemistry, 3rd edn. Ellis Horwood, PTR Prentice Hall, New York. ISBN 0130309907

    Google Scholar 

  • Mishra A, Srivastava NK (1991) Effect of tricontanol formulation ‘Miraculan’ on photosynthesis, growth, nutrient uptake and essential oil yield of lemongrass (Cymbopogon flexuosus). Plant Growth Regul 10:57–63

    Google Scholar 

  • Mishra LN, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R (2008) Withanoloids from Withania somnifera roots. Phytochemistry 69:1000–1004

    PubMed  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2012) Efficient genetic transformation of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250:451–459

    PubMed  Google Scholar 

  • Niazi A, Azizi A (2008) Orthogonal signal correction-partial least squares method for simultaneous spectrophotometric determination of nickel, cobalt, and zinc. Turk J Chem 32:217–228

    CAS  Google Scholar 

  • Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036

    CAS  PubMed  Google Scholar 

  • Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    CAS  PubMed  Google Scholar 

  • Pan Q, Wang Q, Yuan F (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7:38–45

    Google Scholar 

  • Pauli GF (2001) qNMR- a versatile concept for the validation of natural product reference compounds. Phytochem Anal 12:28–42

    CAS  PubMed  Google Scholar 

  • Perez-Enciso M, Tenenhaus M (2003) Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet 112:581–592

    PubMed  Google Scholar 

  • Pichersky E, Gang DR (2005) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Google Scholar 

  • Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28:1127–1135

    CAS  PubMed  Google Scholar 

  • Ren Y, Wang T, Peng Y, Xia B, Qu LJ (2009) Distinguishing transgenic from non-transgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. J Genet Genomics 36:621–628

    CAS  PubMed  Google Scholar 

  • Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335–360

    CAS  PubMed  Google Scholar 

  • Rischer H, Oksman-Caldentey KM (2006) Unintended effects in genetically modified crops: revealed by metabolomics? Trends Biotechnol 24:102–104

    CAS  PubMed  Google Scholar 

  • Roessner U, Bowne J (2009) What is metabolomics all about? Biotechniques 46:363–365

    CAS  PubMed  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    CAS  PubMed  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosipal R, Kramer N (2005) Overview and recent advances in partial least squares. SLSFS 2005. LNCS 3940:34–35

    Google Scholar 

  • Ryan D, Robards K (2006) Metabolomics: the greatest omics of them all? Anal Chem 78:7954–7958

    CAS  PubMed  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Tuli R, Sangwan RS (2007) Micro-propagation of Withania somnifera L. accessions from axillary meristem for rapid propagation and consistent withanolide productivity. J Herbs Spices Med Plants 13:118–128

    Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Mishra LN, Sangwan RS (2008) In Vitro Withanolide production by Withania somnifera L. culture. Zeitschrift furNaturforschung 63c:409–412

    Google Scholar 

  • Sabir F, Kumar A, Tiwari P, Pathak N, Sangwan RS, Bhakuni RS, Sangwan NS (2010) Bioconversion of artemisinin to its nonperoxidic derivative deoxyartemisinin through suspension cultures of Withania somnifera Dunal. Zeitschrift furNaturforschung 65:607–612

    CAS  Google Scholar 

  • Sabir F, Sangwan RS, Singh J, Pathak N, Mishra LN, Sangwan NS (2011) Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal). Plant Biotechnol Rep 5:112–134

    Google Scholar 

  • Sabir F, Sangwan RS, Kumar R, Sangwan NS (2012a) Salt stress-induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). J Plant Growth Regul 10:344–356

    Google Scholar 

  • Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2012b) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 250:539–549

    PubMed  Google Scholar 

  • Sangwan RS, Sangwan NS (2000) Metabolic and molecular analysis of chemotypic diversity in aromatic grasses (Cymbopogon spp.). In: Kumar S, Dwivedi S, Kukreja AK, Sharma JR, Bagchi GD (eds) Aromatic grass monograph. CIMAP, Lucknow, pp 223–247

    Google Scholar 

  • Sangwan RS, Farooqi AHA, Bansal RP, Sangwan NS (1993) Interspecific variation in physiological and metabolic responses to water stress in five species of Cymbopogon. J Plant Physiol 142:618–622

    CAS  Google Scholar 

  • Sangwan NS, Farooqi AHA, Sangwan RS (1994) Effect of drought on growth and essential oil metabolism in lemongrass species. New Phytol 128:173–179

    Google Scholar 

  • Sangwan NS, Yadav U, Sangwan RS (2001) Molecular analysis of genetic diversity in elite Indian cultivars of essential oil trade types of aromatic grasses (Cymbopogon species). Plant Cell Rep 20:437–444

    CAS  Google Scholar 

  • Sangwan NS, Yadav U, Sangwan RS (2003) Genetic diversity among elite varieties of the aromatic grasses, Cymbopogon martinii. Euphytica 130:117–130

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Mishra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri AK, Qazi GN, Tuli R (2004) Phytochemical variability in commercial herbal products and preparation of Withania somnifera (Ashwagandha). Curr Sci 86:461–465

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Mishra LN, Uniyal GC, Tuli R, Sangwan NS (2007) Withanoloid A biogeneration, in in vitro shoot culture of ashwagandha (Withania somnifera Dunal), a main medicinal plant in Ayurveda. Chem Pharm Bull 55:1371–1375

    CAS  PubMed  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Mishra LN, Tuli R, Sangwan NS (2008) Root contained withanolide A is inherently de novo synthesized within roots in Ashwagandha (Withania somnifera). Physiol Plant 133:278–287

    CAS  PubMed  Google Scholar 

  • Sangwan NS, Kumar R, Srivastava S, Kumar A, Gupta A, Sangwan RS (2011) Recent developments on secondary metabolite biosynthesis in Artemisia annua L. J Plant Biol 37:1–24

    Google Scholar 

  • Sangwan RS, Tripathi S, Singh J, Narnolia LK, Sangwan NS (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 55:58–76

    Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    CAS  PubMed  Google Scholar 

  • Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405:5003–5004

    CAS  PubMed  Google Scholar 

  • Shanker S, AjayKumar PV, Sangwan NS, Kumar S, Sangwan RS (1999) Oil gland fine structure and metabolic attributes at different phases of leaf development and senescence in Mentha arvensis. Biol Plant 42:379–387

    Google Scholar 

  • Shanks JV (2005) Phytochemical engineering: combining chemical reaction engineering with plant science. AIChE J 51:2–7

    CAS  Google Scholar 

  • Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139

    CAS  PubMed  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    CAS  PubMed  Google Scholar 

  • Siahpoosh MR, Sanchez DH, Schlereth A (2012) Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipe i309. Plant Sci 182:101–111

    CAS  PubMed  Google Scholar 

  • Sidhu OP, Annarao S, Chatterjee S, Tuli R, Roy R, Khetrapal CL (2011) Metabolic alterations of Withania somnifera (L.) dunal fruits at different developmental stages by NMR spectroscopy. Phytochem Anal 22:492–502

    CAS  PubMed  Google Scholar 

  • Smilde AK, Jansen JJ, Hoefsloot HC, Lamers R-J, Greef J v d, Timmerman ME (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048

    CAS  PubMed  Google Scholar 

  • Stein SE, Scott DR (1994) Optimization and testing of mass spectral library search algorithms for compound identification. J Am Soc Mass Spectrom 5:859–866

    CAS  PubMed  Google Scholar 

  • Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Interpreting correlations in metabolomics networks. Biochem Soc Trans 31:1476–1478

    CAS  PubMed  Google Scholar 

  • Stuart BH (2012) Infrared spectroscopy of biological application: an overview. Encycl Anal Chem. doi:10.1002/97804700

    Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Tiwari P, Mishra BN, Sangwan NS (2013) Phytochemical and pharmacological properties of Gymnema Sylvestre, an important medicinal plant. BioMed Res Int Article ID 830285, 18 pages. http://dx.doi.org/10.1155/2014/830285

  • Tohge T, Nishiyama Y, Hirai MN, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    CAS  PubMed  Google Scholar 

  • Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

    CAS  PubMed  Google Scholar 

  • Tschaplinski TJ, Standaert RF, Engle NL (2012) Down-regulation of the caffeic acid O-methyltransferase gene in switch grass reveals a novel monolignol analog. Biotechnol Biofuels 5:71–79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tuli R, Sangwan RS, Kumar S, Bhattacharya S, Misra LN, Trivedi PK, Tewari SK, Misra P, Chaturvedi P, Sangwan NS, Nair KN, Ojha SK, Mehrotra S, Khajuria A, Suri KA (2009) Ashwagandha (Withania somnifera) a model Indian medicinal plant. CSIR Publications, New Delhi, p 294

    Google Scholar 

  • Twining CJ, Taylor CJ (2001) Kernel principal component analysis and the construction of non-linear active shape models. In: Proceedings of British Machine Vision Conference, Hershey, pp 23–32

    Google Scholar 

  • Van den Berg RA, Rubingh CM, Westerhuis JA, Van der Werf MJ, Smilde AK (2009) Metabolomics data exploration guided by prior knowledge. Anal Chim Acta 651:173–181

    PubMed  Google Scholar 

  • Van Nieuwerburgh FCW, VandeCasteele SRF, Maes L, Goossens A, Inze D, VanBocxlaer J, Deforce DLD (2006) Quantitation of artemisinin and its biosynthetic precursors in Artemisia annua. L by high performance liquid chromatography-electrospray quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A 1118:180–187

    PubMed  Google Scholar 

  • Verpoorte R, van der Heijden R, Schripsema J, Hoge JHC, Ten Hoopen HJG (1993) Plant cell biotechnology for production of alkaloids: present status and prospects. J Nat Prod 56:186–207

    CAS  Google Scholar 

  • Ververidis FF, Emmanouil T, Carl D, Guenter V, Georg K, Nickolas P (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:12–14

    Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    CAS  PubMed  Google Scholar 

  • Vichi M, Saporta G (2009) Clustering and disjoint principal component analysis. Comput Stat Data Anal 53:3194–3208

    Google Scholar 

  • Wang M, Qu F, Shan XQ, Lin JM (2003) Development and optimization of a method for the analysis of low-molecular-mass organic acids in plants by capillary electrophoresis with indirect UV detection. J Chromatogr A 989:285–292

    CAS  PubMed  Google Scholar 

  • Warren CR, Adams MA (2000) Capillary electrophoresis for the determination of major amino acids and sugars in foliage: application to the nitrogen nutrition of Sclerophyllous species. J Exp Bot 51:1147–1157

    CAS  PubMed  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    CAS  PubMed  Google Scholar 

  • Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci U S A 101:7809–7814

    PubMed Central  CAS  PubMed  Google Scholar 

  • Welti R, Wang X, Williams TD (2003) Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem 314:149–152

    CAS  PubMed  Google Scholar 

  • Werrman U, Knorr D (1993) Conversión of menthyl acétate or neomenthyl acétate into menthol or neomenthol by cell suspensión cultures of Mentha canadensis and Mentha piperita. J Agric Food Chem 41:517–520

    Google Scholar 

  • Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    CAS  PubMed  Google Scholar 

  • Wishart DS (2007) Current progress in computational metabolomics. Brief Bioinform 8:279–293

    CAS  PubMed  Google Scholar 

  • Wolfender JL, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A 1000:437–455

    CAS  PubMed  Google Scholar 

  • Woo HK, Northen TR, Yanes O, Siuzdak G (2008) Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat Protoc 3:1341–1349

    CAS  PubMed  Google Scholar 

  • Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS (2014a) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83

    CAS  PubMed  Google Scholar 

  • Yadav RK, Sangwan RS, Srivastava AK, Maurya S, Sangwan NS (2014b) Comparative profiling and dynamics of artemisinin related metabolites using efficient protocol and expression of biosynthetic pathway genes during developmental span of two elite varieties of Artemisia annua L. J Plant Biochem Biotechnol. doi:10.1007/s13562-013-0249-z

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yates JR III (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19

    CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Kloti A (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway in to (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Zagrobelny M, Bak S, Moller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to DBT, CSIR and DST, New Delhi, for the financial support to various projects run in our laboratory, which have generated data related with metabolism. Authors are thankful to Director CSIR-CIMAP, Lucknow, for constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam S. Sangwan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sangwan, N.S. et al. (2015). Plant Metabolomics: An Overview of Technology Platforms for Applications in Metabolism. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_9

Download citation

Publish with us

Policies and ethics