Skip to main content

Nanobiotechnology in Agricultural Development

  • Chapter
  • First Online:

Abstract

Nanobiotechnology is the field of science that has recently emerged by conjugation of biotechnology and nanoscience. An extensive range of applications of the field of nanoscience (nanoparticles) have been established in several fields of biosciences and biomedicine with wide applications in industry. Since the potential of this newly emerged field of research and medicine is beyond the scope of this chapter, we will be focusing on their applications in agriculture solely. Since this is a hybrid technique, so it employs all the biotechnological tools for its applications. Their key applications include use in treating plant diseases through site-specific targeting of diseased organs, transforming plants through gold/tungsten nanoparticles coated with engineered plasmid, targeted delivery and controlled release of bioactive substances, etc. Their use in crop protection is just in its infancy. Recently, the concept of using nanoparticles in plant treatment has been established and their applications in the parasitic control in plants are practised successfully. The chapter will focus on the development and use of ‘nanodevices’ for formulating agriculturally important chemicals (fertilizers) with more useful properties and their direct delivery as well as their applications in various agricultural sectors. Still the limitations are there which hinder their use on large scale (commercially).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystals molecules’ using DNA. Nature 382:609–611

    Article  CAS  PubMed  Google Scholar 

  • Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 2002:3018–3019

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nano-silica from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Srivastava A (2003) Synthesis of gold nanoparticles stabilized by metal chelator and the controlled formation of close packed aggregates by them. J Chem Sci 115(5–6):613–619

    Article  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha Rani P, Mandal S, Epidi TT (2010) Nano-particles: a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Datta PS, Chaudhuri P, Barik BR (2011) Nanotechnology: a new frontier for food security in socio economic development. In: Proceeding of disaster, risk and vulnerability conference 2011 held at School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany, 12–14 March 2011

    Google Scholar 

  • Bosetti M, Masse A, Tobin E, Cannas M (2002) Efficacy of silver coated medical devices. J Appl Biomater 23(3):887–892

    Article  CAS  Google Scholar 

  • Cao C, Kim JH, Yoon D, Hwang ES, Kim YJ, Baik S (2008) Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Mater Chem Phys 112(3):738–741

    Article  CAS  Google Scholar 

  • Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MG (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122

    Article  PubMed  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkens R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chaudhry Q, Castle L, Watkins R (2010) Nanotechnologies in food, RSC nanosciences and nanotechnology no. 14. Springer, Cambridge

    Book  Google Scholar 

  • Cheng MM, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 19(1):10–11

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nano-composite coatings. Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Clark HA (1999a) Optical nanosensors for chemical analysis inside single living cells, 2: sensors for pH and calcium and the intracellular application of PEEBLE sensors. J Anal Chem 71(21):4837–4843

    Article  CAS  Google Scholar 

  • Clark HA (1999b) Optical nanosensors for chemical analysis inside single living cells, 1: fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71(21):4831–4836

    Article  CAS  PubMed  Google Scholar 

  • Coles D, Fewer FJ (2013) Nanotechnology applied to European food production – a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43

    Article  CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  CAS  PubMed  Google Scholar 

  • Cornell BA (2002) Optical biosensors: present and future. In: Lighler F, Taitt CR (eds) Membrane based biosensors. Elsevier, Amsterdam

    Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(12):89–92

    Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomologic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 81(1):99–105

    Article  Google Scholar 

  • Douroumis D (2011) Mesoporous silica nanoparticles as drug delivery system. J Nanomed Nanotechnol 2:102e. doi:10.4172/2157-7439.1000102e

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nano tubes. Annu Rev Mater Res 34:247–278

    Article  CAS  Google Scholar 

  • Duncan TJ (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(8):085103. doi:10.1088/0957-4484/20/8/085103

    Article  CAS  PubMed  Google Scholar 

  • Faheem A, Nishat A, Shalendra K, Sarvajeet SG, Ritu G, Narendra T, Bon HK (2013) Nanobiotechnology: scope and potential for crop improvement. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, New York. doi:10.1007/978-1-4614-4633-0_11

  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silvernanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5(4):282–286

    Google Scholar 

  • Galandova J, Ziyatdinova G, Labuda J (2008) Disposable electrochemical biosensor with multiwalled carbon nanotubes-chitosan composite layer for the detection of deep DNA damage. Anal Sci 24(6):711–716

    Article  CAS  PubMed  Google Scholar 

  • Giardi MT, Piletska EV (2006) Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, New York

    Book  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:604–611

    Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Graciela WP, Qin W (2012) Nanotechnology research methods for food and bioproducts. Wiley-Blackwell, Oxford

    Google Scholar 

  • Guan HA, Chi DF, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soybean fields. Crop Prot 29(9):942–946

    Article  CAS  Google Scholar 

  • Herrera M, Carrion P, Baca P, Liebana J, Castillo A (2001) In vitro antibacterial activity of glass ionomer cements. Microbios 104(409):141–148

    CAS  PubMed  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2002) A whole blood immunoassay using gold nano-shells. Anal Chem 75(23):77–81

    Google Scholar 

  • Ijima S (1991) Helical micro-tubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358(1–2):37–54

    Article  CAS  PubMed  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. www.nanoforum.org

  • Kabir L (2011) Inhibition effect of silver nanoparticles against powdery mildew for cucumber and pumpkin. Mycobiology 39(1):26–32

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaufmann SHF (2005) Novel vaccination strategies. Wiley-VCH, Weinham

    Google Scholar 

  • Khan AS (2012) Nanotechnology: ethical and social implications. CRC Press, Boca Raton

    Google Scholar 

  • Khanna VK (2008) New-generation nano-engineered bio-sensors, enabling nanotechnologies and nanomaterials. Sens Rev 28(1):39–45

    Article  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227 (Article retracted, ACS Nano, 6, 7541 (2012))

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Knauer K, Bucheli T (2009) Nano-materials-the need for research in agriculture. Agrarforschung 16(10):390–395

    Google Scholar 

  • Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO(2)/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J Electroanal Chem 650(2):163–170

    Article  CAS  Google Scholar 

  • Kuswandi B, Wicaksono Y, Jayus J, Abdullah A, Heng L, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Instrum Food Qual Saf 5(3):137–146

    Article  Google Scholar 

  • Kuzma J (2010) Nanotechnology in animal production – upstream assessment of applications. Livest Prod Sci 130:14–24

    Article  Google Scholar 

  • Lansdown ABG (2002) Silver I: its antibacterial properties and mechanism of action. J Wound Care 11:125–138

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Braro R (2006) Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect 114(2):260–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Y, Jiao K, Yang T, Sun D (2008) Sensitive PAT gene sequence detection by nano-SiO2/paminothio-phenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sens Actuator B 131(2):565–571

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  • Maki WC, Mishra NN, Cameron EG, Filanoski B, Rastogi SK, Maki GK (2008) Nanowire transistor based ultra-sensitive DNA methylation detection. Biosens Bioelectron 23(6):780–787

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Selvakannan P, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of stable gold hydrosol by the reduction of chloroaurate ions by amino acid, aspartic acid. J Chem Sci 114(5):513–520

    Article  CAS  Google Scholar 

  • Miller G, Senjen R (2008) Out of the laboratory and on to our plates. Nanotechnology in food & agriculture. Friends of the Earth, Australia/Europe/USA. In: Friends of the Earth Europe website, 31 May 2011. Available from http://www.foeeurope.org/activities/nanotechnology/Documents/Nano_food_report.pdf

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanoparticle Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Nagy A, Mestl G (1999) High temperature partial oxidation reactions over silver catalysts. Appl Catal A Gen 188(1):337–353

    Article  CAS  Google Scholar 

  • Nair R, Kumar DS (2013) Plant diseases control and remedy through nanobiotechnology. In: Tutja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, New York

    Google Scholar 

  • Nair R, Varguese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nanoposts Report (2008) Nanotechnology and consumer goods market and applications to 2015, 2008.

    Google Scholar 

  • Nguyen DN, Ngo TT, Nguyen QL (2012) Highly sensitive fluorescence resonance energy transfer (FRET)-based nanosensor for rapid detection of clenbuterol. Adv Nat Sci Nanosci Nanotechnol 3(3). doi:10.1088/2043-6262/3/3/035011

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Elect J Environ Agric Food Chem 7(50):2942–2947

    CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Park IY, Kim IY, Yoo MK, Choy YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor mediated gene delivery. Int J Pharm 359:280–287

    Article  CAS  PubMed  Google Scholar 

  • Patil A, Chirmade UN, Slipper I, Lamprou DA, Urquhart A, Douroumis D (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J Nanomed Nanotechnol 2:111. doi:10.4172/2157-7439.1000111

    Article  CAS  Google Scholar 

  • Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125(34):10192–10193

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2009) Pesticide and pest control. In: Peshin P, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht

    Google Scholar 

  • Qian K, Shi TY, Tang T, Zhang SL, Liu XL, Cao YS (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1–2):51–57

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (1999) Precision agriculture: changing the face of farming. Geotimes feature article. www.ghcc.msfc.nasa.gove/precisionag/. Accessed 19 Nov 2011

  • RSRAE The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. RS policy document, The Royal Society and Royal Academy of Engineering, London 19/04 (July 2004)

    Google Scholar 

  • Rytwo G (2012) The use of clay polymer nanocomposites in waste water pretreatment. Sci World J (7), 498503. doi:10.1100/2012/498503

    Google Scholar 

  • Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver coated medical devices. J Hosp Infect 40:257–262

    Article  CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm nanotechnology and the transformation of nature, food and agri-food systems. Int J Social Agric Food 15(2):22–44

    Google Scholar 

  • Seo S, Dobozi-King M, Young RF, Kish LB, Cheng M (2008) Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron Eng 85(7):1484–1489

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2012) Introducing carbon nanotubes into living walled plant cells through cellulase induced nanoholes. RSC Adv 2:398–400

    Article  CAS  Google Scholar 

  • Shana A, Rogers KR (1994) Biosensors. Meas Sci Technol 5(5):461–472

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Zhu Y, Wen XE, Zhuang YM (2007) Preparation of Fe3O4-C18 nanomagnetic composite materials and their cleanup properties for organophosphorus pesticides. Anal Bioanal Chem 387(6):2227–2237

    Article  CAS  PubMed  Google Scholar 

  • Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO (1974) Antibacterial effects of silver electrodes with weak direct current. Microb Agent Chemother 6:637–642

    Article  CAS  Google Scholar 

  • Srilatha B (2011) Nanotechnology in agriculture. J Nanomed Nanotechnol 2:123

    Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nanoagriculture – carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:274–275

    CAS  Google Scholar 

  • Suh KS, Tanaka T (2011) Nanomedicine in cancer. Transl Med 1:103e. doi:10.4172/2161-1025.1000103e

    Article  Google Scholar 

  • Sumner JP, Aylott JW, Monson E, Kopelman R (2002) A fluorescent PEBBLE nanosensor for intracellular free zinc. Analyst 127:11–16

    Article  CAS  PubMed  Google Scholar 

  • Sundari PA, Manisankar P (2011) Development of nano poly (3-methylthiophene)/multiwalled carbon nanotubes sensor for the efficient detection of some pesticides. J Braz Chem Soc 22(4):746–755

    Article  CAS  Google Scholar 

  • Susan SL (2003) Waste fiber can be recycled into valuable products using new technique of electrospinning, Cornell researchers report. Cornell Chronicle. http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html

  • Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63

    Article  CAS  Google Scholar 

  • Torney F (2009) Nanoparticle mediated plant transformation. Emerging technologies in plant science research. Interdepartmental Plant Physiology Major Fall Seminar Series Physics, p 696

    Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176

    Article  CAS  PubMed  Google Scholar 

  • Velasco MN (2009) Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin Cell Dev Biol 20(1):27–33

    Article  CAS  Google Scholar 

  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Vo-Dinh T (2005) Optical nanosensors for detecting proteins and biomarkers in individual living cells. Methods Mol Biol 300:383–402

    CAS  PubMed  Google Scholar 

  • Wang LJ, Li XF, Zhang GY, Dong JF, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen J, Zhang H, Lu M, Qiu D, Wen Y, Kong Q (2011) Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol 11(3):1533–4880

    Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xi Y (2005) Controlled synthesis of metal nanostructures. Chem Eur J 11:454–463

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Tanagawa M, Matsumoto S, Yamada T, Atsuta M (1999) Antibacterial activity of resin composites with silver containing materials. Eur J Oral Sci 107(4):290–296

    Article  CAS  PubMed  Google Scholar 

  • You C, Bhagawati M, Brecht A, Piehler A (2009) Affinity capturing for targeting proteins into micro and nanostructures. Anal Bioanal Chem 393(6–7):1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Tang H, Geng P, Wang Q, Jin L, Wu Z (2007) Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 9(4):833–838

    Article  CAS  Google Scholar 

  • Zhang W, Yang T, Huang D, Jiao K, Li G (2008a) Synergistic effects of nano-ZnO/multi-walled carbon nano- tubes/chitosan nanocomposite membrane for the sensitive detection of sequence specific of PAT gene and PCR amplification of NOS gene. J Membr Sci 325:245–251

    Article  CAS  Google Scholar 

  • Zhang W, Yang T, Huang DM, Jiao K (2008b) Electro-chemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin Chem Lett 19:589–591

    Article  CAS  Google Scholar 

  • Zhao X, Zhaoyang L, Wenguang L, Wingmoon L, Peng S, Richard YTK, Keith DKL, William WL (2011) Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency. J Nanoparticle Res 13(2):1572–1896

    Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul Kazi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Resham, S., Khalid, M., Kazi, A.G. (2015). Nanobiotechnology in Agricultural Development. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_24

Download citation

Publish with us

Policies and ethics