Control Strategy for PQ Improvement in an Autonomous Microgrid Using Bacterial Foraging Optimization Algorithm

  • N. Chitra
  • A. Senthil Kumar
  • P. Priyadharshini
  • K. M. Shobana
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 325)

Abstract

This paper bestows a global optimization algorithm-based optimal power control stratagem for an island microgrid. The foremost aim is to improve the power quality of the microgrid. The primary performance parameters that are considered are voltage regulation and frequency regulation, especially starting of island mode. An inner loop of current control and an outer loop of power control are combined to form the projected control strategy. Bacterial foraging optimization algorithm (BFOA) is an intellectual search algorithm which is employed for self-tuning the control parameters. To validate the performance of the controllers, simulation is performed with the help of MATLAB/Simulink software.

Keywords

Bacterial foraging optimization algorithm Microgrid Distributed generation Voltage source inverter Hysteresis current control 

References

  1. 1.
    H.C. Berg, D. Brown, Chemotaxis in Escherichia coli analysed by three dimensional tracking. Nature 239, 500–504 (1972)CrossRefGoogle Scholar
  2. 2.
    K. Bong-Hwan, M. Byung-Duk, Y. Jang-Hyoun, An improved space-vector-based hysteresis current controller. IEEE Trans. Ind. Electron. 45(5), 752–760 (1998)CrossRefGoogle Scholar
  3. 3.
    P. Dash, M. Padhee, S. Barik, Estimation of power quality indices in distributed generation systems during power islanding conditions. Int. J. Electr. Power Energy Syst. 36(1), 18–30 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Il-Yop, L. Wenxin, D.A. Cartes, K. Schoder, Control parameter optimization for a microgrid system using particle swarm optimization, in IEEE International Conference on Sustainable Energy Technologies, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems (1547–2003) (2008), pp. 837–842Google Scholar
  5. 5.
    M.P. Kazmierkowski, L. Malesani, Current control techniques for three-phase voltage-source PWM converters: a survey. IEEE Trans IndElectron. 45(5), 691–703 (1998)Google Scholar
  6. 6.
    R. Lasseter et al., White paper on integration of distribution energy resource: the CERTS microgrid concepts (2002)Google Scholar
  7. 7.
    Y. Li, D. MahindaVilathgamuwa, P.C. Loh, Microgrid power quality enhancement using a three-phase three -wire grid-interfacing compensator. IEEE Trans. Power Electron. 41(4) (2006)Google Scholar
  8. 8.
    Y. Li, D. MahindaVilathgamuwa, P.C. Loh, Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator. IEEE Trans. Ind. Appl. 41(6) (2005)Google Scholar
  9. 9.
    Passino, Kevin,M.: Bacterial foraging optimization. International Journal of Swarm Intelligence Research (IJSIR). 1(1) (2010) 1–16Google Scholar
  10. 10.
    K.M. Passino, Biomimicry for Optimization (Springer, Berlin, 2004)Google Scholar
  11. 11.
    Z. Qingrong, C. Liuchen, Study of advance current control strategies for three-phase grid-connected PWM inverter for distributed generation, in Proceedings of IEEE Conference on Control Applications (2005), pp. 1311–1316Google Scholar
  12. 12.
    R. Strzelecki, G. Benysek, Power Electronics in Smart Electrical Energy Networks (Springer, London, 2008)Google Scholar
  13. 13.
    Y. Wang, Z. Lu, M. Yong, Analysis and comparison on the control strategies of multiple voltage source converters: managing the change, in 10th IET International Conference on Developments in Power System Protection (2010)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • N. Chitra
    • 1
  • A. Senthil Kumar
    • 1
  • P. Priyadharshini
    • 1
  • K. M. Shobana
    • 1
  1. 1.Department of Electrical and Electronics EngineeringSKP Engineering CollegeTiruvannamalaiIndia

Personalised recommendations