Computer-Aided Diagnosis of Breast Elastography and B-Mode Ultrasound

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 325)

Abstract

Ultrasound (US) elastography, a new technique that images the elasticity of tissues, is now into the course of breast cancer diagnosis. The purpose of this study was to assess the diagnostic performance of a neural network using a combination of US elastography technique and US B-mode. A back-propagation neural network (BPN) is used to classify the breast masses as benign cyst, benign solid mass, or malignant solid mass using texture, strain, and morphological features computed from the segmented lesions. Sixty-two breast lesions in US elastography and US B-scan images that are biopsy proved are examined. A classification accuracy using a combination of US elastography and B-scan images is 87.09 %, sensitivity 89.29 %, specificity 85.29 %, positive predictive value 83.33 %, and the negative predictive value is 90.63 %. With statistically significant features, the classification accuracy using a combination of US elastography and B-scan images is reported to be 82.25 % with sensitivity 92.86 %, specificity 73.53 %, positive predictive value 74.29 %, and negative predictive value 92.59 %. The classification results indicate that US elastography in combination with US B-mode improves both sensitivity and specificity.

Keywords

Ultrasound elastography Elastic properties of tissues Hardness and softness of lesions Level set segmentation Jacquard coefficient Neural network 

References

  1. 1.
    D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Global cancer statistics. CA Cancer J. Clin. 55, 74–108 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, X. Li, Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasound Imag. 13, 111–134 (1991)Google Scholar
  3. 3.
    J. Ophir, I. Cespedes, B. Garra, H. Ponnekanti, Y. Huang, N. Maklad, Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo. Eur. J. Ultrasound 3, 49–70 (1996)CrossRefGoogle Scholar
  4. 4.
    J. Ophir, S.K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C.R.B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, T. Varghese, Elastography: imaging of the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29, 155–171 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Ophir, S.K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, T. Varghese, Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc. Instn. Mech. Engrs. 213, 203–233 (1999)CrossRefGoogle Scholar
  6. 6.
    T. Rago, F. Santini, M. Scutari, A. Pinchera, P. Vitti, Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J. Clin. Endocrinol. Metab. 92, 2917–2922 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Wilson, Q. Chen, J.A. Zagzebski, T. Varghese, L. Van Minddlesworth, Initial clinical experience imaging scatterer size and strain in thyroid nodules. J. Ultrasound Med. 25, 1021–1029 (2006)Google Scholar
  8. 8.
    T.J. Hall, Y. Zhu, C.S. Spalding, In vivo real-time freehand palpation imaging. Ultrasound Med. Biol. 29, 427–435 (2003)CrossRefGoogle Scholar
  9. 9.
    E.E. Konofagou, T. Harrigan, J. Ophir, Shear strain estimation and lesion mobility assessment in elastography. Ultrason. 38, 400–404 (2000)Google Scholar
  10. 10.
    R.G. Bar, A.E. Lackey, The utility of the “bull’s-eye” artifact on breast elasticity imaging in reducing breast lesion biopsy rate. Ultrasound Q. 27(3), 151–155 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Li, C. Xu, C. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2005) pp. 430–436Google Scholar
  12. 12.
    Y. Yu, S.T. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11, 1260–1270 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  14. 14.
    S. Selvan, M. Kavitha, S. Shenbagadevi, S. Suresh, Feature extraction for characterization of breast lesions in ultrasound echography and elastography. J. Comput. Sci. 6(1), 67–74 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Selvan, M. Kavitha, S.S. Devi, S. Suresh, Fuzzy based classification of breast lesions using ultrasound echography and elastography. Ultrasound Q. 28(3), 159–167 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Selvan, M. Kavitha, S. Shenbagadevi, S. Suresh, Automatic segmentation and feature extraction of breast lesions. Int. J. Comput. Intell. Healthc. Inform. 3(2) 65–69 (2010)Google Scholar
  17. 17.
    R. Haralick, K. Shanmugam, I. Dinstein, Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  18. 18.
    M.R. Chandraratne, S. Samarasinghe, D. Kulasiri, R. Bickerstaffe, Prediction of lamb tenderness using image surface texture features. J. Food Eng. 77(3), 492–499 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Horsch, M.L. Giger, Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29(2), 157–164 (2002)CrossRefGoogle Scholar
  20. 20.
    R.O. Duda, P.E. Hart, Pattern classification and scene analysis (John Wiley & Sons, Menlo Park, California, 1973), p. 216Google Scholar
  21. 21.
    T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, T. Hall, Elastic moduli of breast and prostate tissues under Compression. Ultrason. Imaging 20, 260–274 (1998)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Centre for Medical ElectronicsCollege of Engineering, Anna UniversityChennaiIndia
  2. 2.Department of Fetal MedicineMediscan SystemsChennaiIndia

Personalised recommendations