Advertisement

A (t, n) Secure Sum Multiparty Computation Protocol Using Multivariate Polynomial Secret Sharing Scheme

  • K. Praveen
  • Nithin Sasi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 324)

Abstract

A (t, n) threshold scheme is a method for sharing a secret among n shareholders so that the collaboration of at least t shareholders is required in order to reconstruct the shared secret. In this paper, we propose a (t, n) secure sum multiparty computation protocol using multivariate polynomial secret sharing scheme. In this scheme, any t or more shareholders acting in collusion can reconstruct the secret, but a particular shareholder’s information is not revealed to other shareholders. This scheme can be applied for authenticating a selected single group of t participants securely without revealing their shares.

Keywords

Multiparty computation Secret sharing Multivariate linear polynomial Group authentication 

References

  1. 1.
    A. Shamir, How to share a secret. Comm. ACM. 22(11), 612–613 (1979)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    G.R. Blakley.: Safeguarding cryptographic keys, in Proceedings of the AFIPS National Computer Conference, vol. 48 (1979), pp. 313–317Google Scholar
  3. 3.
    A. Beimel, Secret-Sharing Schemes: A Survey. Coding Cryptology 6639, 11–46 (2011)Google Scholar
  4. 4.
    Z. Shen, X. Yu.: A multivariate linear polynomial secret share scheme and it’s applications. J. Computat. Inf. Syst. 7(3), 904–915 (2011) (Springer, Heidelberg)Google Scholar
  5. 5.
    O. Goldreich, Secure Multi-Party Computation (Working Draft). (1998)Google Scholar
  6. 6.
    R. Sheikh, B. Kumar, D.K. Mishra, A distributed k-secure sum protocol for secure multi-party computations. J. Comput. 2(3), 2151–9617 (2010)Google Scholar
  7. 7.
    L. Harn, Group authentication. IEEE Trans. Comput. 62(9) (2013)Google Scholar
  8. 8.
    W. Bin, P.H. Dong, L.J. Hua, A secure (t, n) threshold signature scheme. J. Shanghai Jiaotong Univ. 36(9), 1333–1336 (2002)Google Scholar
  9. 9.
    A. Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman Cryptosystem, in Proceeding of the 23 IEEE Symposium Found on Computer Science (1982), pp. 142–152Google Scholar
  10. 10.
    B. Zhao, Secret sharing in the encrypted domain with secure comparison. Global Telecommunications Conference (GLOBECOM 2011) (2011)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.TIFAC-CORE in Cyber Security, Amrita Vishwa Vidyapeetham CoimbatoreCoimbatoreIndia

Personalised recommendations