Zumkeller Labeling Algorithms for Complete Bipartite Graphs and Wheel Graphs

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 324)

Abstract

Let G = (V, E) be a graph. An injective function f: V → N is said to be a Zumkeller labeling of the graph G, if the induced function f *: E → N defined as f * (xy) = f(x) f (y) is a Zumkeller number for all xy ∈ E, x, y ∈ V. A graph G = (V, E) that admits a Zumkeller labeling is called a Zumkeller graph. In this paper, we provide polynomial time algorithms for Zumkeller labeling of complete bipartite graphs and wheel graphs.

Keywords

Polynomial time algorithms Zumkeller labeling Zumkeller numbers Complete bipartite graph Wheel graphs 

References

  1. 1.
    A.K. Srinivasan, Practical numbers. Curr. Sci. 17, 179–180 (1948)Google Scholar
  2. 2.
    Y. Peng, B. Rao, K.P.S. Rao, On Zumkeller numbers. J. Number Theor. 133(4):1135–1155Google Scholar
  3. 3.
    G.S. Bloom, S.W. Golomb, Applications of numbered undirected graphs. IEEE 165(4), 526–570 (1977)Google Scholar
  4. 4.
    Rosa, A., On certain valuations of the vertices of a graph, in ed. by N.B. Gordan, Dunad, Theory of Graphs. International Symposium. (1966) pp. 349–359Google Scholar
  5. 5.
    J.A. Gallian, A dynamic survey of graph labeling. Electron J Comb. 16(DS6) (2013)Google Scholar
  6. 6.
    F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1972)Google Scholar
  7. 7.
    Balamurugan, B.J., Thirusangu, K., Thomas, D.G.: Strongly multiplicative Zumkeller labeling of graphs, in International Conference on Information and Mathematical Sciences (Elsevier, 2013), pp. 349–354Google Scholar
  8. 8.
    R. Johnsonbaugh, Discrete Mathematics. Pearson Education. Asia (2001)Google Scholar
  9. 9.
    Frank Buss.: Zumkeller numbers and partitionsGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • B. J. Balamurugan
    • 1
  • K. Thirusangu
    • 2
  • D. G. Thomas
    • 3
  1. 1.Department of MathematicsAgni College of Technology ThalamburChennaiIndia
  2. 2.Department of MathematicsSIVET College GowrivakkamChennaiIndia
  3. 3.Department of MathematicsMadras Christian College TambaramChennaiIndia

Personalised recommendations