Advertisement

GA-Based Compiler Parameter Set Tuning

  • N. A. B Sankar Chebolu
  • Rajeev Wankar
  • Raghavendra Rao Chillarige
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 324)

Abstract

Determining nearly optimal optimization options for modern-day compilers is a combinatorial problem. Added to this, specific to a given application, platform and optimization objective, fine-tuning the parameter set being used by various optimization passes, enhance the complexity further. In this paper, we apply genetic algorithm (GA) to tune compiler parameter set and investigate the impact of fine-tuning the parameter set on the code size. The effectiveness of GA-based parameter tuning mechanism is demonstrated with the benchmark programs from SPEC2006 benchmark suite that there is a significant impact of tuning the parameter values on the code size. Results obtained by the proposed GA-based parameter tuning technique are compared with existing methods and that shows significant performance gains.

Keywords

Compiler optimization Genetic algorithms Parameter tuning 

References

  1. 1.
    F. Agakov, E. Bonilla, J. Cavazos et al., Using machine learning to focus iterative optimization, in Proceedings of CGO (2006)Google Scholar
  2. 2.
    K.D. Cooper, P.J. Schielke, D. Subramanian, Optimizing for reduced code space using genetic algorithms. SIGPLAN Not. 34(7), 1–9 (1999)CrossRefGoogle Scholar
  3. 3.
    M. Haneda, P.M.W. Knijnenburg, H.A.G. Wijshoff, Automatic selection of compiler options using non-parametric inferential statistics. 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)Google Scholar
  4. 4.
    V. Adve, The next generation of compilers, in Proceedings of CGO (2009)Google Scholar
  5. 5.
    M. Duranton, D. Black-Schaffer, S. Yehia, K. De Bosschere, Computing Systems: Research Challenges Ahead the HiPEAC Vision (2011/2012)Google Scholar
  6. 6.
    J. Cavazos, M.F.P. O’Boyle, Method-specific dynamic compilation using logistic regression, in Proceedings of OOPSLA’06 Google Scholar
  7. 7.
    P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, L. Thiele, Multi-objective exploration of compiler optimizations for real-time systems, in Proceedings of ISORC (2010)Google Scholar
  8. 8.
    N.A.B.S. Chebolu, R. Wankar, R.R. Chillarige, Tuning the optimization parameter set for code size, in Proceedings of MIWAI (2012)Google Scholar
  9. 9.
    A. Martinez-Alvarez, J. Calvo-Zaragoza, S. Cuenca-Asensi, A. Ortiz, A. Jimeno-Morenilla, Multi-objective adaptive evolutionary strategy for tuning compilations. Neurocomputing 123, 381–389 (2014)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • N. A. B Sankar Chebolu
    • 1
    • 2
  • Rajeev Wankar
    • 2
  • Raghavendra Rao Chillarige
    • 2
  1. 1.ANURAGHyderabadIndia
  2. 2.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations