Skip to main content

Sustainable Production of Biofuels from Microalgae Using a Biorefinary Approach

  • Chapter
  • First Online:

Abstract

Biorefinery has emerged as a new concept to derive more than one utility product from biomass. The products from biorefinery include one or more biofuels (biodiesel, bioethanol, biomethane, and biohydrogen) along with other energy sources (syngas and bio-oil), pharmaceutical products, and commercially important chemicals. Biorefineries, thus could simultaneously produce biofuels, bio-based chemicals, heat, and power. The biomass production and its utilization as biofuel has a higher water footprint (WF) than fossil derived fuel. The biorefinery approach has the potential to bring down the WF. Similarly, biorefinery approach has the potential to bring down the carbon footprint. The value added product derived from biorefinery basket includes pigments, nutraceuticals, and bioactive compounds. The use of industrial refusals for biomass production includes wastewater as nutrient medium and utilization of flue gases (CO2) as the carbon source for culture of microalgae. These processes have the potential to reduce fresh WF and carbon footprint.

Bhaskar Singh, Abhishek Guldhe, and Poonam Singh contributed equally to this chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arbib Z, Ruiz J, Alvarez-Diaz P, Garrido-Perez C, Perales JA (2014) Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res 49:465–474

    Article  CAS  Google Scholar 

  • Batan L, Quinn JC, Bradley TH (2013) Analysis of water footprint of a photobioreactor microalgae biofuel production system from blue, green and lifecycle perspectives. Algal Res 2:196–203

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Cabanelas ITD, Arbib Z, Chinalia FA, Souza CO, Perales JA, Almeida PF, Druzian JI, Nascimento IA (2013) From waste to energy: microalgae production in wastewater and glycerol. Appl Energy 109:283–290

    Article  CAS  Google Scholar 

  • Cardozo KH, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol Part C: Toxicol Pharmacol 146:60–78

    Article  Google Scholar 

  • Charlton A, Elias R, Fish S, Fowler P, Gallagher J (2009) The biorefining opportunities in Wales: understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem Eng Res Des 87:1147–1161

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51:1412–1421

    Article  CAS  Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems—a LCA case study. Appl Energy 87:47–57

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH, Ulgiati S (2011) Influence of allocation methods on the environmental performance of biorefinery products—a case study. Resour Conserv Recycl 55:1070–1077

    Article  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102:9135–9142

    Article  CAS  Google Scholar 

  • Coca M, Barrocal VM, Lucas S, González-Benito G, García-Cubero MT (2014) Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process. http://dx.doi.org/10.1016/j.fbp.2014.03.012 Accessed 15 March 2014

  • Cowan AK, Logie MRR, Rose PD, Phillips LG (1995) Stress induction of zeaxanthin formation in the β-Carotene accumulating alga Dunaliella salina Teod. J Plant Physiol 146:554–562

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177

    Article  CAS  Google Scholar 

  • Ekman A, Börjesson P (2011) Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. J Cleaner Prod 19:1257–1265

    Article  CAS  Google Scholar 

  • Ermakova S, Men’shova R, Vishchuk O, Kim SM, Um BH, Isakov V, Zvyagintseva T (2013) Water-soluble polysaccharides from the brown alga Eisenia bicyclis: structural characteristics and antitumor activity. Algal Res 2:51–58

    Article  Google Scholar 

  • Fahd S, Fiorentino G, Mellino S, Ulgiati S (2012) Cropping bioenergy and biomaterials in marginal land: the added value of the biorefinery concept. Energy 37:79–93

    Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49

    Article  CAS  Google Scholar 

  • Ferreira AF, Ribeiro LA, Batistam AP, Marquesm PASS, Nobrem BP, Palavram AMF, da Silva PP, Gouveiam L, Silvam C (2013) A Biorefinery from Nannochloropsis sp. microalga—Energy and CO2 emission and economic analyses. Bioresour Technol 138:235–244

    Article  CAS  Google Scholar 

  • Fornell R, Berntsson T, Åsblad A (2013) Techno-economic analysis of a kraft pulp-mill-based biorefinery producing both ethanol and dimethyl ether. Energy 50:83–92

    Article  CAS  Google Scholar 

  • Gerbens-Leenes PW, van Liendenm AR, Hoekstra AY, van der Meer ThH (2012) Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Glob Environ Change 22:764–775

    Article  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sustain Energy Rev 14:842–848

    Article  CAS  Google Scholar 

  • Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg Technol 8:433–436

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  Google Scholar 

  • Gutiérrez LF, Sánchez ÓJ, Cardona CA (2009) Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresour Technol 100:1227–1237

    Article  Google Scholar 

  • Guldhe A, Singh B, Rawat I, Ramluckan K, Bux F (2014) Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128:46–52

    Article  CAS  Google Scholar 

  • Hammond GP, Seth SM (2013) Carbon and environmental footprinting of global biofuel production. Appl Energy 112:547–559

    Article  Google Scholar 

  • Hernandez EM, Campbell G, Sadhukhan J (2013) Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des 91:1418–1426

    Article  Google Scholar 

  • Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, Chang JS (2014) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol 152:275–282

    Article  CAS  Google Scholar 

  • Huo S, Wang Z, Zhu S, Zhou W, Dong R, Yuan Z (2012) Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China. Bioresour Technol 121:76–82

    Article  CAS  Google Scholar 

  • Inbaraj BS, Chien JT, Chen BH (2006) Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. J Chromatogr A 1102:193–199

    Article  CAS  Google Scholar 

  • Isik O, Sarihan E, Kusvarun E, Gul O, Erbatur O (1999) Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitumand Chlorella Õulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174:299–311

    Article  CAS  Google Scholar 

  • Jayappriyan KR, Rajkumar R, Venkatakrishnan V, Nagaraj S, Rengasamy R (2013) In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomed Prev Nutr 3:99–105

    Article  Google Scholar 

  • Johnson E, Tschudi D (2012) Baseline effects on carbon footprints of biofuels: the case of wood. Environ Impact Assess 37:12–17

    Article  Google Scholar 

  • Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  Google Scholar 

  • Koopmans MV, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  Google Scholar 

  • Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

    Article  CAS  Google Scholar 

  • Lohrasbi M, Pourbafrani M, Niklasson C, Taherzadeh MJ (2010) Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour Technol 101:7382–7388

    Article  CAS  Google Scholar 

  • Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102:1433–1439

    Article  CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conver Manage 36:717–720

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Munier M, Jubeau S, Wijaya A, Morancais M, Dumay J, Marchal L, Jaouen P, Fleurence J (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem 150:400–407

    Article  CAS  Google Scholar 

  • Ng DKS (2010) Automated targeting for the synthesis of an integrated biorefinery. Chem Eng J 162:67–74

    Article  CAS  Google Scholar 

  • Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP, Marques PASS, Mendes RL, Sovová H, Palavra AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136

    Article  CAS  Google Scholar 

  • Orfield ND, Keoleian GA, Love NG (2014) A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization. Biomass Bioenerg 63:76–85

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16:3043–3053

    Article  CAS  Google Scholar 

  • Plaza M, Santoyo S, Jaime L, Garcia-Blairsy Reina G, Herrero M, Senorans FJ, Ibanez E (2010) Screening for bioactive compounds from algae. J Pharm Biomed Anal 51:450–455

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Qin S, Liu GX, Hu ZY (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (chlorophyceae). Process Biochem 43:795–802

    Article  CAS  Google Scholar 

  • Ramanna L, Guldhe A, Rawat I, Bux F (2014) The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol 168:127–135 (http://dx.doi.org/10.1016/j.biortech.2014.03.064)

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rezanka T, Nedbalova L, Kolouchova I, Sigler K (2013) LC-MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers. Phytochemistry 88:34–42

    Article  CAS  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy 35:3865–76

    Google Scholar 

  • Sarada R, Pillai Manoj G, Ravishankar GA (1999) Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801

    Article  CAS  Google Scholar 

  • Sharma YC, Singh B, Korstad J (2011) A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem 13:2993–3006

    Article  CAS  Google Scholar 

  • Shi Y, Sheng J, Yang F, Hu Q (2007) Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chem 103:101–105

    Article  CAS  Google Scholar 

  • Singh B, Guldhe A, Rawat I, Bux F (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 29:216–245

    Article  CAS  Google Scholar 

  • Skjanes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172–215

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Szabo NJ, Matulka RA, Chan T (2013) Safety evaluation of whole algalin protein (WAP) from Chlorella protothecoides. Food Chem Toxicol 59:34–45

    Article  CAS  Google Scholar 

  • Tan RR, Foo DCY, Avisom KB, Ngm DKS (2009) The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Appl Energy 86:605–609

    Article  CAS  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424

    Article  Google Scholar 

  • Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8:53618

    Article  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  CAS  Google Scholar 

  • Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ (2013) Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. Int Soc Microb Ecol 7:1544–1555

    CAS  Google Scholar 

  • Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery-from biofuels to natural products. Bioresour Technol 135:166–1S74

    Article  CAS  Google Scholar 

  • Yuan JP, Chen F, Liu X, Li XZ (2002) Carotenoid composition in the green microalga Chlorococcum. Food Chem 76:319–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, B., Guldhe, A., Singh, P., Singh, A., Rawat, I., Bux, F. (2015). Sustainable Production of Biofuels from Microalgae Using a Biorefinary Approach. In: Kaushik, G. (eds) Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2123-4_8

Download citation

Publish with us

Policies and ethics