Skip to main content

Microbial Diversity: Its Exploration and Need of Conservation

  • Chapter
  • First Online:
Applied Environmental Biotechnology: Present Scenario and Future Trends

Abstract

Microbial diversity is fundamental to maintenance and conservation of global genetic resources. Actions must be taken to estimate, record, and conserve microbial diversity, not only to sustain human health, but also to enhance the human condition globally through sensible use and conservation of genetic resources of the microbial world. The microbial world is the largest unexplored reservoir of biodiversity on the earth. The exploration of microbial diversity has been prompted by the fact that microbes are essential for life, since they perform numerous functions essential for the environment that include nutrient recycling and environmental detoxification. Priceless contribution of microbial diversity in commercial and industrial applications promoted the management of the same for sustainable use. Natural environment is diverse and the enormous potential of microorganisms to provide novel pharmaceuticals, fine chemicals, and new technologies, is used by the biotechnology industry. Unfortunately, despite the evident economic value of microbial diversity, microorganisms have been mostly ignored in debates on the conservation and management of global diversity. There is, therefore, an urgent need to motivate researchers to be more apprehensive about the conservation, management, and exploitation of microbial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banowetz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 3:133–140

    Article  Google Scholar 

  • Barnes SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hotspring environment. Proc Natl Acad Sci U S A 91:1609–1613

    Article  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganisms and population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    CAS  Google Scholar 

  • Brown MV, Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41:15–23

    Article  Google Scholar 

  • Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A 92:4947–4951

    Article  CAS  Google Scholar 

  • Colwell RR, Hawksworth DL (1991) International union of biological sciences, international union of microbiological societies, microbial diversity 21, action statement. Physiol Newsl 27(3):1:8–9

    Google Scholar 

  • Das MT, Budhraja V, Mishra, M, Thakur IS (2012) Toxicological evaluation of paper mill sewage sediment treated by indigenous dibenzofuran degrading Pseudomonas sp. Bioresour Technol 110:71–78

    Article  CAS  Google Scholar 

  • Davison AD, Gillings MR, Jardine DR, Karuso P, Nouwens AS, French JJ, Veal DA, Altavilla N (1999) Sphingomonas paucimobilis BPSI-3 mutant AN2 produces a red catabolite during biphenyl degradation. J Ind Microbiol Biotechnol 23(4–5):314–319

    Article  CAS  Google Scholar 

  • Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6(1):183–94. doi:10.1038/ismej.2011.74

    Article  CAS  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  CAS  Google Scholar 

  • Dokić L, Savić M, Narančić T, Vasiljević B (2010) Metagenomic analysis of soil microbial communities. Arch Biol Sci-Belgrad 62(3):559–564

    Article  Google Scholar 

  • Ehrlich PR, Wilson EO (1991) Biodiversity studies: science and policy. Science 253:758–761

    Article  CAS  Google Scholar 

  • Evdokimova GA (2000) The impact of heavy metals on the microbial diversity of podzolic soils in the Kola Peninsula. In: Innes JL, Oleksyn J (eds) Forest dynamics in heavily polluted regions. Report No. 1 of the IUFRO Task Force on Environmental Change. publ 2:67–76

    Google Scholar 

  • Fakruddin Md., Chowdhury A (2012) Pyrosequencing—an alternative to traditional Sanger sequencing. Am J Biochem Biotechnol 8(1):14–20

    Article  CAS  Google Scholar 

  • Fakruddin Md., Mannan KSB (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Bio Sci) 42(1):19–33

    Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    CAS  Google Scholar 

  • Friedmann EI (1993) Extreme environments, limits of adaptation and extinction. In: Guerrero R, Pedros-Alio C (eds) Trends in Microbial Ecology, pp 9–12, Spanish Society for Microbiology, Barcelona, Spain

    Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1993a) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization. Applied and Environmental Microbiology 57: 2351– 2359

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso sea bacterioplankton. Nature 345:60–63

    Article  CAS  Google Scholar 

  • Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–6

    Article  CAS  Google Scholar 

  • Jaiswal PK, Kohli S, Gopal M, Thakur IS (2011) Isolation and characterization of alkalotolerant Pseudomonas sp. strain ISTDF1 for degradation of dibenzofuran. J Ind Microbiol 38(4):503–511. doi:10.1007/s10295-010-0793–7

    Article  CAS  Google Scholar 

  • Kauppinen J, Pelkonen J, Katila MJ (1994) RFLP analysis of Mycobacterium malnroense strains using ribosomal RNA gene probes: an additional tool to examine intraspecies variation. J Microbiol Methods 19:261–267

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevor JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  Google Scholar 

  • Lajoie CA, Layton AC, Sayler GS (1994) Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant based field application vector. Appl Environ Microbiol 60(8):2826–2833

    CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  Google Scholar 

  • Loisel P, Harmand J, Zemb O, Eric Latrille E, Lobry C, Delgenès JP, Godon JJ (2006) Denaturing gradient electrophoresis (DGE) and single strand conformation polymorphism (SSCP) molecular finger printings revisited by simulation and used as a tool to measure microbial diversity. Environ Microbiol 4:720–731

    Article  Google Scholar 

  • Mishra M, Thakur IS (2010) Isolation of alkalotolarent bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill by Taguchi approach. Biodegradation 21(6):967–978

    Article  CAS  Google Scholar 

  • Mishra M, Thakur IS (2012) Bioremediation, bioconversion and detoxification of organic compounds in pulp and paper mill effluent for environmental waste management. In: Satyanarayana T et al (eds) Microbes in environmental management and biotechnology: microbes and environment. Springer, The Netherlands, pp. 263–287. doi:10.1007/978-94-007-2229-3_13

    Google Scholar 

  • Mishra M, Das MT, Thakur IS (2013) Mammalian cell-line based toxicological evaluation of paper mill black liquor treated in soil microcosm by indigenous alkalo-tolerant Bacillus sp. Environ Sci Pollut Res Int 21:2966–2976. doi:10.1007/s11356-013-2241-5

    Article  Google Scholar 

  • Moyer CL, Tiedje JM, Dobbs FC, Karl DM (1996) A computer-simulated restriction fragment length polymorphism analysis of Bacterial Small-subunit rRNA genes: Efficacy of selected tetraneric restriction enzymes for studies of microbial diversity in Nature. Applied and Environmental Microbiology 62:2501–2507

    Article  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Article  CAS  Google Scholar 

  • Nakatsu CH, Torsvik V, Ovreas L (2000) Soil community analysis using DGGE of 16S rDNA polymerasechain reaction products. Soil Sci Soc Am J 64:1382–1388

    Article  CAS  Google Scholar 

  • Nardini E, Kisand V, Lettieri T (2010) Microbial biodiversity and molecular approach. JRC Scientific and Technical Reports. doi:10.2788/60582

    Google Scholar 

  • Pearce DA (2008) Climate change and the microbiology of the Antarctic Peninsula region. Sci Prog 91:203–217

    Article  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microbiol Ecol 42:1–14

    Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment I. In: Ahmad et al (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York. doi10.1007/978-1-4419-7931-5_2

    Google Scholar 

  • Ranjard L, Brothier E, Nazaret S (2000) Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Applied and Environmental Microbiology 66:5334–5339

    CAS  Google Scholar 

  • Rodriguez-Blanco A, Antoine V, Pelletier E, Delille D, Ghiglione JF (2009) Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea. Environ Pollut 158:663–673

    Article  Google Scholar 

  • Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269(1):117–23

    Article  CAS  Google Scholar 

  • Sandin SA, Smith JE, Demartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JB, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3:e1548

    Article  Google Scholar 

  • Scheinert P, Krausse R, Ullman U, Soller R, Krupp G (1996) Molecular differentiation of bacteria by PCR amplification of the 16S-23S rRNA spacer. J Microbiol Methods 26:103–117

    Article  CAS  Google Scholar 

  • Staddon WJ, Duchesne LC, Trevors JT (1996) Conservation of forest soil microbial diversity: the impact of fire and research needs. Environ Rev 4(4): 267–275

    Article  CAS  Google Scholar 

  • Swannell RPJ, Head IM (1994) Bioremediation comes of age. Nature 368:396–397

    Article  Google Scholar 

  • Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176

    CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13(2):109–122

    Article  Google Scholar 

  • Tripathi CKM, Tripathi D, Praveen V, Bihari V (2007) Microbial diversity: biotechnological and industrial perspectives. Indian J Exp Biol 45:326–332

    CAS  Google Scholar 

  • Trevors J T (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air & Soil Pollution 101:45– 67

    CAS  Google Scholar 

  • Urizar NL, Liverman AB, Dodds DT et al (2002) A natural product that lowers cholesterol as anantagonist ligand for FXR. Science 296:1703–1706

    Article  CAS  Google Scholar 

  • Van Middlesworth F, Cannell RJP (1998) Dereplication and partial identification of natural products. In: Cannell RJ (ed) Methods in biotechnology, 4: natural product isolation. Humana Press, Totowa, pp 279–327

    Chapter  Google Scholar 

  • Zhang L (2005) Integrated approaches for discovering novel drugs from microbial natural products natural products. In: Zhang L, Demain AL (eds) Drug discovery and therapeutic medicine. Humana Press, Totowa

    Google Scholar 

  • Zhang R, Thiyagarajan V, Qian PY (2008) Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments. FEMS Microbiol Ecol 65(1):169–178

    Article  CAS  Google Scholar 

  • Zhang W, Wang H, Zhang R, Yu XZ, Qian PY, Wong MH (2010). Bacterial ecommunities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 19:96–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mishra, M. (2015). Microbial Diversity: Its Exploration and Need of Conservation. In: Kaushik, G. (eds) Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2123-4_4

Download citation

Publish with us

Policies and ethics