Skip to main content

Eneström–Kakeya Theorem and Some of Its Generalizations

Part of the Trends in Mathematics book series (TM)

Abstract

The study of the zeros of polynomials has a very rich history. In addition to having numerous applications, this study has been the inspiration for much theoretical research (including being the initial motivation for modern algebra). The earliest contributors to this subject were Gauss and Cauchy. Algebraic and analytic methods for finding zeros of a polynomial, in general, can be quite complicated. So it is desirable to put some restrictions on polynomials. Eneström–Kakeya theorem, which is a result in this direction, states that if \(p(z)=\sum_{j=0}^n a_j z^j\) is a polynomial of degree n with real coefficients satisfying \(0\leq a_0\leq a_1\leq \cdots \leq a_n\), then all the zeros of p lie in \(|z|\leq 1\). Eneström–Kakeya theorem has been the starting point for considerable literature in Mathematics, concerning the location of the zeros of polynomials. In this article we begin with the earliest results of Eneström and Kakeya and conclude this by presenting some of the recent results on this subject. Our article is expository in nature.

Keywords

  • Kakeya
  • Finding Zeros
  • Gulzar
  • Zargar
  • Zero-free Region

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-2113-5_8
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-81-322-2113-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)

Notes

  1. 1.

    Härledning af en allmän formel för antalet pensionärer, som vid en godtyeklig tidpunkt förefinnas inom en sluten pensionslcassa; Öfversigt af Vetenskaps-Akademiens Förhandlingar (Stockholm), 50, 1893, pp. 405–415. The resulting theorem was stated by me, also in L’intermédiaire des Mathématiciens 2, 1895, p. 418, and in Jahrbuch über die Fortschritte der Mathematik 25 (1893–1894), p. 360, and also mentions the problem of the theory of pensions to which I alluded in the text.

References

  1. Affane-Aji, C., Govil, N.K.: On the regions containing all the zeros of a polynomial. In: Georgiev, P.G., Pardalos, P., Srivastava, H.M. (eds.) Nonlinear Analysis: Stability, Approximation and Inequalities. Springer Optimization and Its Applications, vol. 68, pp. 39–55 (2012)

    Google Scholar 

  2. Affane-Aji, C., Agarwal, N., Govil, N.K.: Location of zeros of polynomials. Math. Comput. Model. 50, 306–313 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Affane-Aji, C., Biaz, S., Govil, N.K.: On annuli containing all the zeros of a polynomial. Math. Comput. Model. 52, 1532–1537 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Anderson, N., Saff, E.B., Varga, R.S.: On the Eneström-Kakeya theorem and its sharpness. Linear Algebr. Appl. 28, 5–16 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Anderson, N., Saff, E.B., Varga, R.S.: An extension of the Eneström-Kakeya theorem and its sharpness. SIAM J. Math. Anal. 12(1), 10–22 (1980)

    CrossRef  MathSciNet  Google Scholar 

  6. Aziz, A., Mohammad, Q.G.: On the zeros of a certain class of polynomials and related analytic functions. J. Math. Anal. Appl., 75, 495–502 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Aziz, A., Mohammad, Q.G.: Zero-free regions for polynomials and some generalizations of Eneström–Kakeya theorem. Can. Math. Bull. 27(3), 265–272 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Aziz, A., Shah, W.M.: On the zeros of polynomials and related analytic functions. Glas. Mat. 33(53), 173–184 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Aziz, A., Zargar, B.A.: Some extensions of Eneström–Kakeya theorem. Glas. Mat. 31(51), 239–244 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Aziz, A., Zargar, B.A.: Bounds for the zeros of a polynomial with restricted coefficients. Appl. Math. 3, 30–33 (2012)

    CrossRef  MathSciNet  Google Scholar 

  11. Cao, J., Gardner, R.: Restrictions on the zeros of a polynomial as a consequence of conditions on the coefficients of even powers and odd powers of the variable. J. Comput. Appl. Math. 155, 153–163 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Cargo, G.T., Shisha, O.: Zeros of polynomials and fractional order differences of their coefficients. J. Math. Anal. Appl. 7, 176–182 (1963)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Cauchy, A.: Exercises de mathématique. Oeuvres (2) Vol. 9, p. 122 (1829)

    Google Scholar 

  14. Chattopadhyay, A., Das, S., Jain, V.K., Konwar, H.: Certain generalizations of Eneström-Kakeya theorem. J. Indian Math. Soc. 72(1–4), 147–156 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Choo, Y.: Further generalizations of Eneström–Kakeya theorem. Int. J. Math. Anal. 5(20), 983–995 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Choo, Y., Some results on the zeros of polynomials and related analytic functions. Int. J. Math. Anal. 5(35), 1741–1760 (2011)

    MATH  MathSciNet  Google Scholar 

  17. Choo, Y., Choi, G.K.: Further results on the generalizations of Eneström–Kakeya theorem. Int. J. Math. Anal. 5(42), 2075–2088 (2011)

    MATH  MathSciNet  Google Scholar 

  18. Choo, Y., Choi, G.K.: On the robustness property of Eneström–Kakeya theorem. Int. J. Math. Anal. 5(42), 2089–2096 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Dalal, A., Govil, N.K.: On the region containing all the zeros of a polynomial. Appl. Math. Comput. 219, 9609–9614 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Dewan, K.K., Bidkham, M.: On the Eneström–Kakeya theorem. J. Math. Anal. Appl. 180, 29–36 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Dewan, K.K., Govil, N.K.: On the Eneström–Kakeya theorem. J. Approx. Theory 42, 239–244 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Eneström, G.: Härledning af en allmän formel för antalet pensionärer, som vid en godtyeklig tidpunkt förefinnas inom en sluten pensionslcassa. Öfvers. Vetensk.-Akad. Förh. 50, 405–415 (1893)

    Google Scholar 

  23. Eneström, G.: Remarque sur un théorème relatif aux racines de l’equation \(a_nx^n+an-1xn-1+\cdots a_1x+a_0=0\) où tous les coefficientes a sont réels et positifs. Tôhoku Math. J. 18, 34–36 (1920)

    MATH  Google Scholar 

  24. Gardner, R.B., Govil, N.K.: On the location of the zeros of a polynomial. J. Approx. Theory 78(2), 286–292 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. Gardner, R.B., Govil, N.K.: Some generalizations of the Eneström-Kakeya theorem. Acta Math. Hung. 74(1–2), 125–134 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Gauss, K.F.: Beiträge zur Theorie der algebraischen Gleichungen. Abh. Ges. Wiss. Göttingen, Vol. 4 (1850)

    Google Scholar 

  27. Gilani, N.A.: Eneström–Kakeya theorem and its generalizations. Int. J. Math. Arch. 4(4), 84–89 (2013)

    Google Scholar 

  28. Govil, N.K., Jain, V.K.: On the Eneström–Kakeya theorem. Ann. Univ. Mariae Curie-Sklodowska Sect. A 27, 13–18 (1973)

    MathSciNet  Google Scholar 

  29. Govil, N.K., Jain, V.K.: On the Eneström–Kakeya theorem, II. J. Approx. Theory 22(1), 1–10 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Govil, N.K., Rahman, Q.I.: On the Eneström-Kakeya theorem. Tôhoku Math. J. Sec. Ser. 20(2), 126–136 (1968)

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. Gulzar, M.H.: Bounds for the zeros and extremal properties of polynomials. Doctoral thesis, University of Kashmir, Srinagar (2012)

    Google Scholar 

  32. Gulzar, M.H.: On the Eneström–Kakeya theorem and its generalizations. Int. J. Comput. Eng. Res. 3(1): 225–234 (2012)

    MathSciNet  Google Scholar 

  33. Gulzar, M.H.: On the zeros of polynomials. Int. J. Mod. Eng. Res. 2(6), 4318–4322 (2012)

    MathSciNet  Google Scholar 

  34. Gulzar, M.H.: Bounds for the zeros of a certain class of polynomials. Int. J. Adv. Sci. Tech. Res. 3(3), 220–229 (2013)

    Google Scholar 

  35. Gulzar, M.H.: Further generalizations of Eneström–Kakeya theorem. Int. J. Eng. Inven. 2(3), 49–58 (2013)

    Google Scholar 

  36. Gulzar, M.H.: Some generalizations of Eneström–Kakeya theorem. Int. J. Sci. Res. Publ. 3(2), 1–12 (2013)

    MathSciNet  Google Scholar 

  37. Gulzar, M.H.: On the location of zeros of analytic functions. IOSR J. Eng. 3(1), 16–20 (2013)

    CrossRef  MathSciNet  Google Scholar 

  38. Gulzar, M.H.: Zero-free regions for polynomials with restricted coefficients. Res. Inven. Int. J. Eng. Sci. 2(6), 6–10 (2013)

    MathSciNet  Google Scholar 

  39. Gulzar, M. H., Liman, A., Shah, W.M.: Extensions of Eneström–Kakeya theorem (Preprint)

    Google Scholar 

  40. Hayashi, T.: On a theorem of Mr. Kakeya’s. Tôhoku Math. J. First Ser. 2, 21–5 (1912–1913)

    Google Scholar 

  41. Hayashi, T.: On the roots of an algebraic equation. Tôhoku Math. J. First Ser. 3, 110–115 (1913)

    MATH  Google Scholar 

  42. Hurwitz, A.: Über einen Satz des Harrn Kakeya. Tôhoku Math. J. First Ser. 4, 626–631 (1913–1914)

    Google Scholar 

  43. Jain, V.K.: On the Enström-Kakeya theorem III. Ann. Univ. Mariae Curie-Sklodowska 42(4), 25–33 (1988)

    MATH  Google Scholar 

  44. Jain, V.K.: An infinite strip for the zeros of polynomials. Glas. Mat. 28(48), 29–33 (1993)

    MATH  Google Scholar 

  45. Jain, V.K.: On the zeros of a polynomial. Proc. Indian Acad. Sci. (Math. Sci.), 119(1), 37–43 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  46. Joyal, A., Labelle, G., Rahman, Q.I.: On the location of zeros of polynomials. Can. Math. Bull. 10(1), 53–63 (1967)

    CrossRef  MATH  MathSciNet  Google Scholar 

  47. Kakeya, S.: On the limits of the roots of an algebraic equation with positive coefficients. Tôhoku Math. J. First Ser. 2, 140–142 (1912–1913)

    Google Scholar 

  48. Krishnaiah, P.V.: On Kakeya’s theorem. J. Lond. Math. Soc. 30, 314–319 (1955)

    CrossRef  MATH  MathSciNet  Google Scholar 

  49. Lima, A., Shah, W.M., Ahmad, I.: Generalizations of Eneström–Kakeya theorem-I. Int. J. Mod. Math. Sci. 8(3), 139–148 (2013)

    Google Scholar 

  50. Lin, A., Huang, B., Cao, J., Gardner, R.: Some results on the location of zeros of analytic functions. Chin. J. Eng. Math. 21(5), 785–791 (2004)

    MATH  MathSciNet  Google Scholar 

  51. Marden, M.: Geometry of Polynomials. Mathematical Surveys, vol. 3. American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  52. Milovanović, G.V., Mitrinović, D.S., Rassias, Th.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)

    CrossRef  MATH  Google Scholar 

  53. Mond, B., Shisha, O.: Zeros of polynomials in several variables and fractional order differences of their coefficients. J. Res. Natl. Bur. Stand. Sec. B. Math. Phys. 68, 115–118 (1964)

    CrossRef  MATH  MathSciNet  Google Scholar 

  54. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Clarendon, Oxford (2002)

    MATH  Google Scholar 

  55. Rubinstein, Z.: Some results in the location of zeros of polynomials. Pac. J. Math. 15, 1391–1396 (1965)

    CrossRef  MATH  Google Scholar 

  56. Shah, W.M., Liman, A.: On Eneström-Kakeya theorem and related analytic functions. Proc. Indian Acad. Sci. (Math. Sci.) 117(3), 359–370 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  57. Singh, G., Shah, W.M.: On the Eneström–Kakeya theorem. Appl. Math. 3, 555–560 (2010)

    CrossRef  Google Scholar 

  58. Singh, G., Shah, W.M.: Location of zeros of complex polynomials. J. Adv. Res. Pure Math. 3(4), 1–6 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  59. Singh, G., Shah, W.M.: On the location of zeros of polynomials. Am. J. Comput. Math. 1, 1–10 (2011)

    CrossRef  MathSciNet  Google Scholar 

  60. Singh, G., Shah, W.M.: On the Eneström–Kakeya theorem. Bull. Math. Soc. Sci. Math. Roum. 56(104)(4), 505–512 (2013)

    MathSciNet  Google Scholar 

  61. Sun, Y.J., Hsieh, J.G.: A note on circular bound of polynomial zeros. IEEE Trans. Circuits Syst. I Regul. Pap. 43, 476–478 (1996)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Gardner .

Editor information

Editors and Affiliations

Appendix

Appendix

Remark on a Theorem on the Roots of the Equation

\(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0\) Where

All Coefficients Are Real and Positive

by

G. Eneström, Stockholm, Sweden

Tôhoku Mathematical Journal, 18 (1920), 34-36

A translation of ``Remarque sur un théorème relatif aux racines de l’equation\(a_nx^n+a_{n-1}x^{n-1}+\cdots a_1x+a_0=0\) où tous les coefficientes $a$ sont réels et positifs'' by G. Eneström. Translated by Robert Gardner.

In 1912 M. S. Kakeya demonstrated in a paper in this journal that the absolute value of each root of the equation above [in the title] is between the smallest and largest values of

$$\frac{a_{n-1}}{a_n}, \frac{a_{n-2}}{a_{n-1}}, \ldots, \frac{a_0}{a_1},$$

and therefore for [positive] \(a_n>a_{n-1}>\cdots>a_0\), the absolute value of each root is less than 1.

This theorem has already been proposed and demonstrated by me in 1893 in a footnote to a problem on pension funds.Footnote 1 This problem leads us to the equation

$$k^{s-1}+a_1k^{s-2}+\cdots + a_{s-2}k + a_{s-1}=0 (A)$$

where all of these coefficients are real and positive and for which

$$1>a_1\geq a_2\geq \cdots \geq a_{s-1}.$$

The reference cited in the footnote is written in Swedish and at the request of Mr. Hayashi I now translate verbatim the part about the roots of this equation.

Define α1 as the smallest of the quantities

$$a_1, \frac{a_2}{a_1}, \frac{a_3}{a_2}, \ldots, \frac{a_{s-1}}{a_{s-2}}$$

and it is then evident from this definition of α1 that

$$a_{q+1}-\alpha_1 a_q\geq 0 \, \, \, (q=0, 1, 2, \ldots, s-2; a_0=1).$$

Multiplication of equation (A) by \(k-\alpha_1\), results in

$$ k^s+(a_1-\alpha_1)k^{s-1}+(a_2-\alpha_1a_1)k^{s-2}+\cdots +(a_{s-1}-\alpha_1 a_{s-2})k-\alpha_1a_{s-1}=0 {(B)}$$

and if we substitute \(\rho(\cos \phi+i\sin \phi)\) for k, where ρ is the absolute value of k, then ρ and φ must satisfy the equations

$$\rho^s \cos s\phi + (a_1-\alpha_1)\rho^{s-1}\cos (s-1)\phi + (a_2-\alpha_1a_1)\rho^{s-2}\cos(s-2)\phi $$
$$ + \cdots + (a_{s-1} -\alpha_1a_{s-2})\rho\cos \phi - \alpha_1 a_{s-1}=0,$$
$$\rho^s \sin s\phi + (a_1-\alpha_1)\rho^{s-1}\sin (s-1)\phi + (a_2-\alpha_1a_1)\rho^{s-2}\sin(s-2)\phi $$
$$ + \cdots + (a_{s-1} -\alpha_1a_{s-2})\rho\sin \phi =0. {(C)}$$

We now show that if \(\rho<\alpha_1\), equation (C) can not hold, regardless of the value of φ. Indeed, all coefficients \(a_1-\alpha_1, a_2-\alpha_1a_1, \ldots, a_{s-1}-\alpha_1 a_{s-2}\) are positive, so the left side can not be greater than

$$\rho^s+(a_1-\alpha_1)\rho^{s-1}+(a_2-\alpha_1 a_1)\rho^{s-2}+ \cdots + (a_{s-1}-\alpha_1 a_{s-2})\rho - \alpha_1 a_{s-1}$$

and this expression can be written as

$$\rho^{s-1}(\rho-\alpha_1)+ a_1\rho^{s-2}(\rho-\alpha_1)+ \cdots + a_{s-2}\rho (\rho -\alpha_1)+a_{s-1} (\rho-\alpha_1),$$

which is negative if \(\rho<\alpha_1\). The left side of equation (C) is therefore negative for \(\rho<\alpha_1\). It follows that the absolute value of each root of equation (A) is greater than or equal to α1.

In a similar way we can show that with α2 as the largest of the quantities

$$a_1, \frac{a_2}{a_1}, \frac{a_3}{a_2}, \ldots, \frac{a_{s-2}}{a_{s-1}},$$

the absolute value of each root of the equation (A) must be less than or equal to α2.

For this proof, replace k with \(k^{s-1}\) [in equation (A)]. Then multiply the new equation by \(k-1/\alpha_2\) and we easily find that the absolute value of k can never be less than \(1/\alpha_2\), from which it follows immediately that the value of k can not be greater than α2. We now have

$$\alpha_1\leq |k_i|\leq \alpha_2, \, \, \, (i=0, 1, 2, \ldots, s-1).$$

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Gardner, R., Govil, N. (2014). Eneström–Kakeya Theorem and Some of Its Generalizations. In: Joshi, S., Dorff, M., Lahiri, I. (eds) Current Topics in Pure and Computational Complex Analysis. Trends in Mathematics. Birkhäuser, New Delhi. https://doi.org/10.1007/978-81-322-2113-5_8

Download citation