Skip to main content

Stem Cell Therapy for Cardiac Tissue Regeneration Post-myocardial Infarction

  • Chapter
  • First Online:
Stem Cell Therapy for Organ Failure

Abstract

Myocardial infarction typically is the result of atherosclerotic plaque rupture in a coronary artery followed by platelet aggregation and thrombus formation resulting in partial or total vessel occlusion with diminished blood flow to the myocardial tissue downstream [1]. Within minutes to hours, cardiomyocytes in the ischemic region undergo apoptosis resulting in cell death [2, 3]; this results in damaged myocardium, left ventricular dysfunction, and heart failure [4, 5]. Myocardial infarction results in substantial mortality and morbidity worldwide [6]. Currently, there are limited therapies to consistently and effectively reverse the course of this process, and the possibility to replace or restore damaged heart tissue using cell therapy is an exciting concept. Stem cells are undifferentiated and unspecialized cells found in the body that have the potential to develop into all cell types [1]. The present chapter focuses on defining various stem cells and their use for cardiac tissue regeneration post-myocardial infarction. In addition, the major challenges and drawbacks associated with their use will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boudoulas KD, Hatzopoulos AK (2009) Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis Model Mech 2:344–358

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Takemura G, Fujiwara H (2004) Role of apoptosis in remodeling after myocardial infarction. Pharmacol Ther 104:1–16

    CAS  PubMed  Google Scholar 

  3. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease-a novel therapeutic target? FASEB J 16:135–146

    CAS  PubMed  Google Scholar 

  4. Narula J, Pandey P, Arbustini E et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci 96:8144–8149

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sabbah HN, Sharov VG, Goldstein S (2000) Cell death, tissue hypoxia and the progression of heart failure. Heart Fail Rev 5:131–138

    CAS  PubMed  Google Scholar 

  6. Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127:749–756

    PubMed Central  PubMed  Google Scholar 

  7. Singla DK, Hacker TA, Ma L et al (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195–200

    CAS  PubMed  Google Scholar 

  8. Christoforou N, Oskouei BN, Esteso P et al (2010) Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One 5:e11536

    PubMed Central  PubMed  Google Scholar 

  9. Liu Y, Ye X, Mao L et al (2013) Transplantation of parthenogenetic embryonic stem cells ameliorates cardiac dysfunction and remodeling after myocardial infarction. Cardiovasc Res 97:208–218

    CAS  PubMed  Google Scholar 

  10. Burt RK, Chen YH, Verda L et al (2012) Mitotically inactivated embryonic stem cells can be used as an in vivo feeder layer to nurse damaged myocardium after acute myocardial infarction: a preclinical study. Circ Res 111:1286–1296

    CAS  PubMed  Google Scholar 

  11. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  12. Stadtfeld M, Maherali N, Breault DT et al (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Xiong Q, Ye L, Zhang P et al (2013) Functional consequences of human induced pluripotent stem cells therapy: myocardial ATP turnover rate in the in vivo swine hearts with post-infarction remodeling. Circulation 127(9):997–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Gu M, Nguyen PK, Lee AS et al (2012) Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 111:882–893

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Deng J, Han Y, Yan C et al (2010) Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis 15:463–473

    CAS  PubMed  Google Scholar 

  16. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    CAS  PubMed  Google Scholar 

  17. Gore A, Li Z, Fung HL, Young JE et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hussein SM, Batada NN, Vuoristo S et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62

    CAS  PubMed  Google Scholar 

  19. Zhao T, Zhang Z-N, Rong Z et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    CAS  PubMed  Google Scholar 

  20. Deten A, Volz HC, Clamors S et al (2004) Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc Res 65:52–63

    Google Scholar 

  21. Muller-Sieburg CE, Cho RH, Thoman M et al (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:1302–1309

    CAS  PubMed  Google Scholar 

  22. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    CAS  PubMed  Google Scholar 

  24. Young PP, Vaughan DE, Hatzopoulos AK (2007) Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis 49:421–429

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    CAS  PubMed  Google Scholar 

  26. Dzau VJ, Gnecchi M, Pachori AS (2005) Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol 46:1351–1353

    PubMed  Google Scholar 

  27. Shantsila E, Watson T, Lip GY (2007) Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49:741–752

    CAS  PubMed  Google Scholar 

  28. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    CAS  PubMed  Google Scholar 

  29. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  30. Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19

    PubMed Central  PubMed  Google Scholar 

  31. Grauss RW, Winter EM, van Tuyn J et al (2007) Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol Heart Circ Physiol 293:H2438–H2447

    CAS  PubMed  Google Scholar 

  32. Otto Beitnes J, Oie E, Shahdadfar A et al (2012) Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplant 21:1697–1709

    PubMed  Google Scholar 

  33. Grinnemo KH, Månsson-Broberg A, Leblanc K et al (2006) Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med 38:144–153

    CAS  PubMed  Google Scholar 

  34. Hosoda T (2012) C-kit-positive cardiac stem cells and myocardial regeneration. Am J Cardiovasc Dis 2:58–67

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Barile L, Messina E, Giacomello A et al (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 4:S9–S14

    CAS  PubMed  Google Scholar 

  36. Boyle AJ, Schulman SP, Hare JM (2006) Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair. Circulation 114:339–352

    PubMed  Google Scholar 

  37. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    CAS  PubMed  Google Scholar 

  38. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci 100:12313–12318

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hamdi H, Furuta A, Bellamy V et al (2009) Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg 87(4):1196–1203

    PubMed  Google Scholar 

  40. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  41. Kang SK, Shin IS, Ko MS et al (2012) Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012:342968

    PubMed Central  PubMed  Google Scholar 

  42. Perin EC, López J (2006) Methods of stem cell delivery in cardiac diseases. Nat Rev Cardiol 3:S110–S113

    Google Scholar 

  43. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    CAS  PubMed  Google Scholar 

  44. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Penn MS, Mangi AA (2008) Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res 102:1471–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Li W, Ma N, Ong LL et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2:18–27

    Google Scholar 

  47. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    CAS  PubMed  Google Scholar 

  48. Hodgkinson CP, Gomez JA, Mirotsou M et al (2010) Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther 21:1513–1526

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104

    PubMed  Google Scholar 

  50. Tsujimoto Y, Yunis J, Onorato-Showe L et al (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406

    CAS  PubMed  Google Scholar 

  51. Filip S, Mokry J, Horacek J et al (2008) Stem cells and the phenomena of plasticity and diversity: a limiting property of carcinogenesis. Stem Cells Dev 17:1031–1038

    PubMed  Google Scholar 

  52. Smart N, Riley PR (2008) The stem cell movement. Circ Res 102:1155–1168

    CAS  PubMed  Google Scholar 

  53. Chen J, Chemaly E, Liang L et al (2010) Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. Am J Pathol 176:1705–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Rombouts WJC, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170

    CAS  PubMed  Google Scholar 

  55. Tang YL, Tang Y, Zhang YC et al (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350

    CAS  PubMed  Google Scholar 

  56. Pasha Z, Wang Y, Sheikh R et al (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142

    CAS  PubMed  Google Scholar 

  57. Saini U, Gumina RJ, Wolfe B et al (2013) Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. J Cell Biochem 114:2612

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Khan M, Meduru S, Gogna R et al (2012) Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function. Cardiovasc Res 93:89–99

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ng Y-S, D’Amore PA (2001) Therapeutic angiogenesis for cardiovascular disease. Curr Control Trials Cardiovasc Med 2:278–285

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Wang X, Hu Q, Mansoor A et al (2006) Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts. Am J Physiol Heart Circ Physiol 290:H1393–H1405

    CAS  PubMed  Google Scholar 

  61. Christman KL, Vardanian AJ, Fang Q et al (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654–660

    CAS  PubMed  Google Scholar 

  62. Lu WN, Lü SH, Wang HB et al (2009) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 15:1437–1447

    CAS  PubMed  Google Scholar 

  63. Scudellari M (2009) The delivery dilemma. Nat Rep Stem Cells. doi:10.1038/stemcells.2009.104

  64. Kang WJ, Kang HJ, Kim HS et al (2006) Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 47:1295–1301

    PubMed  Google Scholar 

  65. Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    PubMed  Google Scholar 

  66. Aicher A, Zeiher AM, Dimmeler S (2005) Mobilizing endothelial progenitor cells. Hypertension 45:321–325

    CAS  PubMed  Google Scholar 

  67. Teng CJ, Luo J, Chiu RC et al (2006) Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 132:628–632

    PubMed  Google Scholar 

  68. Suzuki K, Murtuza B, Beauchamp JR et al (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 10:1153–1155

    Google Scholar 

  69. Kim K, Lerou P, Yabuuchi A et al (2007) Histocompatible embryonic stem cells by arthenogenesis. Science 315:482–486

    CAS  PubMed  Google Scholar 

  70. Swijnenburg RJ, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci 105:12991–12996

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Zhao Y, Li T, Wei X et al (2012) Mesenchymal stem cell transplantation improves regional cardiac remodeling following ovine infarction. Stem Cells Transl Med 1:685–695

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Blum B, Bar-Nur O, Golan-Lev T et al (2009) The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol 27:281–287

    CAS  PubMed  Google Scholar 

  73. Martins-Taylor K, Xu R-H (2012) Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells 30:22–27

    CAS  PubMed  Google Scholar 

  74. Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomized phase 1 trial. Lancet 379:895–904

    PubMed  Google Scholar 

  75. Hirsch A, Nijveldt R, van der Vleuten PA et al (2011) Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J 32:1736–1747

    PubMed  Google Scholar 

  76. Traverse JH, Henry TD, Ellis SG et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function the late TIME randomized trial. JAMA 306:2110–2119

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Bolli R, Chueh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomized phase 1 trial. Lancet 378:1847–1857

    PubMed Central  PubMed  Google Scholar 

  78. Menasché P, Alfieri O, Janssens S et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    PubMed  Google Scholar 

  79. Meluzin J, Mayer J, Groch J et al (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 152:e9–e15

    PubMed  Google Scholar 

  80. Meyer GP, Wollert KC, Lotz J et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294

    PubMed  Google Scholar 

  81. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232

    CAS  PubMed  Google Scholar 

  82. Schächinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow–derived progenitor cells in acute myocardial in acute myocardial infarction. N Engl J Med 355:1210–1221

    PubMed  Google Scholar 

  83. Ge J, Li Y, Qian J et al (2006) Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 92:1764–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Hendrikx M, Hensen K, Clijsters C et al (2006) Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 114(suppl):I101–I107

    PubMed  Google Scholar 

  85. Janssens S, Dubois C, Bogaert J et al (2006) Autologous bone marrow–derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomized controlled trial. Lancet 367:113–121

    PubMed  Google Scholar 

  86. Lunde K, Solheim S, Aakhus S et al (2006) Intracoronary injections of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209

    CAS  PubMed  Google Scholar 

  87. Chen S, Liu S, Tian SN et al (2006) Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 18:552–556

    PubMed  Google Scholar 

  88. Kang H, Lee H, Na S et al (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation 114(suppl):I145–I151

    PubMed  Google Scholar 

  89. Ruan W, Pan C, Huang G, Li Y et al (2005) Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J (Engl) 118:1175–1181

    Google Scholar 

  90. Erbs S, Linke A, Adams V et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762

    CAS  PubMed  Google Scholar 

  91. Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    PubMed  Google Scholar 

  92. Choi JH, Choi J, Lee WS et al (2007) Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ J 71:486–494

    PubMed  Google Scholar 

  93. Gavira JJ, Herreros J, Perez A et al (2006) Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 131:799–804

    PubMed  Google Scholar 

  94. Ince H, Petzsch M, Rehders TC et al (2004) Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 11:695–704

    PubMed  Google Scholar 

  95. Katritsis DG, Sotiropoulou PA, Karvouni E et al (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65:321–329

    PubMed  Google Scholar 

  96. Mocini D, Staibano M, Mele L et al (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 151:192–197

    PubMed  Google Scholar 

  97. Strauer BE, Brehm M, Zeus T, Köstering M et al (2002) Repair of infracted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    PubMed  Google Scholar 

  98. Strauer BE, Brehm M, Zeus T et al (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 46:1651–1658

    PubMed  Google Scholar 

  99. Tatsumi T, Ashihara E, Yasui T et al (2007) Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ J 71:1199–1207

    PubMed  Google Scholar 

  100. Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    PubMed  Google Scholar 

  101. Meluzín J, Janousek S, Mayer J et al (2008) Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 128:185–192

    PubMed  Google Scholar 

  102. Losordo DW, Henry TD, Davidson C et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109:428–436

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Dean Boudoulas MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Saini, U., Boudoulas, K.D. (2014). Stem Cell Therapy for Cardiac Tissue Regeneration Post-myocardial Infarction. In: Somasundaram, I. (eds) Stem Cell Therapy for Organ Failure. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2110-4_6

Download citation

Publish with us

Policies and ethics