Skip to main content

Blue Carbon in Floral Community

  • Chapter
  • First Online:
Blue Carbon Reservoir of the Blue Planet

Abstract

Forests play a crucial role in regulating the climate of the planet Earth by acting as important storehouses of carbon. Forest plants and soils drive the global carbon cycle by sequestering (storing) carbon dioxide through photosynthesis and releasing it through respiration. When the uptake of carbon dioxide (photosynthesis) exceeds losses via respiration, harvest and management, forests store carbon (C sinks). In an undisturbed forest, ~74 % of the carbon dioxide is stored in live stems and branches, 16 % is stored in roots, and 10 % is stored in soils.

…Conserve the blue carbon lane

And increase the carbon gain…

The Authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348:711–714

    Article  Google Scholar 

  • Ajtay GL, Ketner P, Duvigneaud P (1979) Terrestrial primary production and phytomass. Global Carbon Cycle 13:129–182

    Google Scholar 

  • Alongi DM, Boto KG, Robertson AI (1992) Nitrogen and phosphorous cycle’s. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, D.C, pp 251–292

    Chapter  Google Scholar 

  • Amarasinghe MD, Balasubramaniam S (1992) Structural properties of two types of mangrove stands on the northwestern coast of Sri Lanka. Hydrobiologia 247:17–27

    Article  Google Scholar 

  • Ball MC, Munns R (1992) Plant responses to salinity under elevated atmospheric conditions of CO2. Aust J Bot 40:515–525

    Article  Google Scholar 

  • Ball MC, Cochrane MJ, Rawson HM (1997) Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant Cell Environ 20:1158–1166

    Article  Google Scholar 

  • Bazilevich NI (1974) Energy flow and biological regularities of the world ecosystems. Cavé

    Google Scholar 

  • Bazilevich NI, Rodin LY, Rozov NN (1971) Geographical aspects of biological productivity. Sov Geogr Rev Transl 12:293–317; and Paper Vth Congress USSR Geographical Society, Leningrad, 1970

    Google Scholar 

  • Beer S, Eschel A, Waisel Y (1977) Carbon metabolism in seagrasses. J Exp Bot 28:1180–1189

    Article  Google Scholar 

  • Benedict CR, Scott JR (1976) Photosynthetic carbon metabolism of a marine grass. Plant Physiol 57:876–880

    Article  Google Scholar 

  • Bohn HL (1976) Estimate of organic carbon in world soils. Soil Sci Soc Am J 40:468–470

    Article  Google Scholar 

  • Bohn HL (1978) Organic soil carbon and CO2. Tellus 30:472–475

    Article  Google Scholar 

  • Bohn HL (1982a) Organic carbon in world soils. Soil Sci J Am 46:1118–1119

    Article  Google Scholar 

  • Bohn HL (1982b) Estimate of organic carbon in world soils: II. Soil Sci Soc Am J 46:1118–1119

    Article  Google Scholar 

  • Bolin B, Degens ET, Duvigneaud P, Kempe S (1979) The global biogeochemical carbon cycle. In: Bolin B, Degens ET, Kempe S, Kenter P (eds) The global carbon cycle, 1st edn. Wiley, Chichester, pp 1–56

    Google Scholar 

  • Boto K, Wellington J (1984) Soil characteristics and nutrient status in a Northern Australian mangrove forest. Estuaries Coasts 7:61–69

    Article  Google Scholar 

  • Bouillon S, Rivera-Monroy VH, Twilley RR, Kairo JG (2009) Mangroves. In: Laffoley D, Grimsditch GD (eds) The management of natural coastal carbon sinks. IUCN

    Google Scholar 

  • Bowes G, Holaday AS, Van TK, Hallen WT (1978) Photosynthetic and photorespiratory carbon metabolism in aquatic plants. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis. The Biochemical Society, London, pp 289–298

    Google Scholar 

  • Briggs SV (1977) Estimates of biomass in a temperate mangrove community. Aust J Ecol 2:369–373. Sciences 68:338–354

    Google Scholar 

  • Brown LR, Larsen J, Dorn JG, Moore F (2006) Time for Plan B: cutting carbon emissions 80 percent by 2020

    Google Scholar 

  • Buringh P (1983) Organic carbon in soils of the world. Role Terr Veg Glob Carbon Cycle. Meas Remote Sens 23

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  Google Scholar 

  • Clough BF, Scott K (1989) Allometric relationship for estimating above ground biomass in six mangrove species. Forest Ecol Manage 27:117–127

    Article  Google Scholar 

  • Clough BF, Dixon P, Dalhaus O (1997) Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Aust J Bot 45:1023–1031

    Article  Google Scholar 

  • Comley BWT, McGuinness KA (2005) Above- and below-ground biomass and allometry of four common northern Australian mangroves. Aust J Bot 53:431–436

    Article  Google Scholar 

  • Cox EF, Allen JA (1999) Stand structure and productivity of the introduced Rhizophora mangle in Hawaii’. Estuaries 22(2A):276–284

    Article  Google Scholar 

  • Dahdouh-Guebas F, Koedam N (2006) Empirical estimate of the reliability of the use of the point-centred quarter method (PCQM): solutions to ambiguous field situations and description of the PCQM + protocol. Forest Ecol Manage 228:1–18

    Article  Google Scholar 

  • Denny MW (1988) Biology and the mechanics of the wave-swept environment. Princeton University Press, Princeton

    Google Scholar 

  • Dixon RK, Krankina ON (1993) Forest fires in Russia: carbon dioxide emissions to the atmosphere. Can J Forest Res 23:700–705

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4

    Google Scholar 

  • Doohan ME, Newcomb EH (1976) Leaf ultrastructure and δ13C values of three seagrasses from the Great Barrier Reef. Aust J Plant Physiol 3:9–23

    Article  Google Scholar 

  • Downton WJS, Bishop DG, Larkum AWD, Osmond CB (1976) Oxygen inhibition of photosynthetic oxygen evolution in marine plants. Aust J Plant Physiol 3:73–79

    Article  Google Scholar 

  • Duarte CM (1999) Methods in comparative functional ecology. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, Inc., New York, pp 1–8

    Google Scholar 

  • Ellison AM, Farnsworth EJ (1996) Anthropogenic disturbance of Caribbean mangrove ecosystems: past impacts, present trends, and future predictions. Biotropica 28:549–565

    Article  Google Scholar 

  • Eswaran H, Den Berg EV, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • FAO/Forest Trends (2007) Investing in the future: an assessment of private sector demand for engaging in markets & payments for ecosystem services, by S. Waage, with contributions from I. Mulder, K. ten Kate, S. Sherr, J.P. Roberts, A. Hawn, K. Hamilton, R. Bayon and N. Carroll. Forthcoming in PESAL (Payments for Environmental Services from Agricultural Landscapes) Papers series. Rome, FAO and Washington, DC, Forest Trends

    Google Scholar 

  • Farnsworth EJ, Ellison AM, Gong WK (1996) Elevated CO2 alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L). Oecologia 108(4):599–609

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  Google Scholar 

  • Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia 115:39–53

    Article  Google Scholar 

  • Gorham E (1990) Biotic impoverishment in northern peatlands. In: Woodwell GM (ed) The earth in transition: patterns and processes of biotic impoverishment. Cambridge University, New York, NY, pp 65–98

    Google Scholar 

  • Gorham E, Janssens JA (1992) Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta societalis botanicorum poloniae 61:7–20

    Article  Google Scholar 

  • Harmon ME, Ferrell WK, Franklin JF (1990) Effects on carbon storage conversion of old-growth forests to young forests. Science 247:699–702

    Article  Google Scholar 

  • Hough RA (1976) Light and dark respiration and release of organic carbon in marine macrophytes of the Great Barrier Reef region. Aust J Plant Physiol 3:63–68

    Article  Google Scholar 

  • Houghton J, Ding Y, Griggs D, Noguer M, Van der Linden P, Dai X, Maskell K, Johnson C (eds) (2001) Climate change. The scientific basis. Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, 881

    Google Scholar 

  • Hurd CL, Galvin RS, Norton TA, Dring MJ (1993) Production of hyaline hairs by intertidal species of Fucus (Fucales) and their role in phosphate uptake. J Phycol 29:160–165

    Article  Google Scholar 

  • Hutchings PA, Saenger P (1985) Ecology of mangroves. University of Queensland Press, St. Lucie

    Google Scholar 

  • Imbert D, Rollet B (1989) Phytmassaerienne et production primaire dans la mangrove du Grand Cul-de-sac Marine (Guadeloupe, Antilles francaises). Bull Ecol 20:27–39

    Google Scholar 

  • IPCC-Working Group II (1990) Chapter 5: world ocean and coastal zones

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jpn J Ecol 17:70–87

    Google Scholar 

  • Komiyama A, Ogino K, Aksornkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108

    Article  Google Scholar 

  • Komiyama A, Moriya H, Prawiroatmodjo S, Toma T, Ogino K (1988) Primary productivity of mangrove forest. In: Ogino K, Chihara M (eds) Biological system of mangroves. Ehime University, Matsuyama, pp 97–117

    Google Scholar 

  • Komiyama A, Havanond S, Srisawatt W, Mochida Y, Fujimoto K, Ohnishi T, Ishihara S, Miyagi T (2000) Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) CB Rob.) Forest. Forest Ecol Manage 139:127–134

    Article  Google Scholar 

  • Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21:471–477

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic matter dynamics in mangrove ecosystems. Aquat Bot. doi:10.1016/j.aquabot.2007.12.005, in press

  • Lee SY (1995) Mangrove outwelling: a review. Hydrobiologia 295:203–212

    Article  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Mackey AP (1993) Biomass of the mangrove Avicennia marina (Forsk.) Vierh, near Brisbane, south eastern Queensland. Aust J Mar Freshw Res 44:721–725

    Article  Google Scholar 

  • Markov VD, Olunin AS, Ospennikova LA, Skobeeva EI, Khoroshev PI (1988) World peat resources. Moscow ‘Nedra’, pp 383 (in Russian)

    Google Scholar 

  • Mateo MA, Romero J, Perez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanic. Estuar Coast Shelf Sci 44:103–110

    Article  Google Scholar 

  • Mateo I, Laborde I, Vicente VP (2006) Monitoring of tropical shallow water fish communities around the Eco Electrica liquefied natural gas import terminal and cogeneration plant in Guayanilla Bay, Puerto Rico. Proc Gulf Carib Fish Inst 57:633–652

    Google Scholar 

  • Mitra A, Gangopadhyay A, Dube A, Andre CK, Schmidt AC, Banerjee K (2009) Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Curr Sci 97(10):1445–1452

    Google Scholar 

  • Norton TA (1991) Conflicting constraints on the form of intertidal algae. Brit Phycol J 26:203–218

    Article  Google Scholar 

  • Odum WE, McIvor CC (1990) Mangroves. In: Ewel J, Myers R (eds) Ecosystems of Florida. University of Central Florida Press. USA, Chap 15, pp 517–548

    Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Oak ridge National Laboratory, Oak Ridge, ORNL-5862

    Google Scholar 

  • Ong JE (1993) Mangroves—a carbon source and sink. Chemosphere 27:1097–1107

    Article  Google Scholar 

  • Ong JE, Gong WK, Wong CH (2004) Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecol Manage 188:395–408

    Article  Google Scholar 

  • Oohata S, Shinnozaki K (1979) A statical model of plant form—further analysis of the pipe model theory. Jpn J Ecol 29:323–335

    Google Scholar 

  • Orem WH, Holmes CW, Kendall C, Lerch HE, Bates AL, Silva SR, Boylan A, Corum M, Marot M, Hedgeman C (1999) Geochemistry of Florida Bay sediments: nutrient history at five sites in eastern and central Florida Bay. J Coast Res 15:1055–1071

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56(2):987

    Article  Google Scholar 

  • Parker PL (1964) The biogeochemistry of the stable isotopes of carbon in a marine bay. Geochim Cosmochim Acta 28:1155–1164

    Article  Google Scholar 

  • Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida, Puerto Rico, Mexico and Costa Rica. Biotropica 9:195–212

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  Google Scholar 

  • Putz FE, Chan HT (1986) Tree growth, dynamic and productivity in a mature mangrove forest in Malaysia. Forest Ecol Manage 17:211–230

    Article  Google Scholar 

  • Raven JA, Johnston AM (1991) Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol Oceanogr 36:1701–1714

    Article  Google Scholar 

  • Ross MS, Ruiz PL, Telesnicki GJ, Meeder JF (2001) Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.A.). Wetlands Ecol Manage 9:27–37

    Article  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture, and conservation. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Saenger P, Snedaker SC (1993) Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96(3):293–299

    Article  Google Scholar 

  • Schlesinger WH (1984) Soil organic matter: a source of atmospheric CO2. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing. Wiley, New York, pp 111–127 (e-publishing)

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant forms the pipe model theory. I. Basic analysis. Jpn J Ecol 14:97–105

    Google Scholar 

  • Sjors H (1980) Peat on earth: multiple uses or conservation? Ambio 9:303–308

    Google Scholar 

  • Smith RG, Bidwell RGS (1989) Inorganic carbon uptake by photosynthetically active protoplasts of the red macroalga Chondrus cnspus. Mar Biol 102:1–4

    Article  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    Article  Google Scholar 

  • Snedaker SC, Araujo RJ (1998) Stomatal conductance and gas exchange in four species of Caribbean mangroves exposed to ambient and increased CO2. Mar Freshw Res 49:325–327

    Article  Google Scholar 

  • Soares MLG, Schaeffer-Novelli YS (2005) Above-ground biomass of mangrove species. I. Analysis of models. Estuar Coast Shelf Sci 65:1–18

    Article  Google Scholar 

  • Steemann Nielsen E (1975) Marine photosynthesis. Elsevier, Amsterdam 142 pp

    Google Scholar 

  • Steinke TD, Ward CJ, Rajh A (1995) Forest structure and biomass of mangrove in the Mgeni estuary, South Africa. Hydrobiologia 295:159–166

    Article  Google Scholar 

  • Tam NFY, Wong YS (1995) Spatial and temporal variations of heavy metal contamination in sediments of a mangrove swamp in Hong Kong. Mar Pollut Bull 31:254–261

    Article  Google Scholar 

  • Tamai S, Nakasuga T, Tabuchi R, Ogino K (1986) Standing biomass of mangrove forests in southern Thailand. J Jpn Forest Soc 68:384–388

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Twilley RR (1995) Properties of mangrove ecosystems related to the energy signature of coastal environment. In: Hall C (ed) Maximum power. University of Colorado Press, Niwot, pp 43–62

    Google Scholar 

  • Twilley RR, Lugo AE, Patterson-Zucca C (1986) Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67:670–683

    Article  Google Scholar 

  • Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288

    Article  Google Scholar 

  • UNEP (1994) The convention on biological diversity: issues of relevance to Africa. Regional ministerial conference on the convention on biological diversity. October. UNEP/AMCEN/RCU 7/1 (A), 27 July

    Google Scholar 

  • Whittaker RH, Likens GE (1975) The biosphere and man. In: Lieth H, Whittaker RH (eds) Primary Productivity of the biosphere. Springer, Berlin. Ecol Stud 14:305–328

    Google Scholar 

Internet References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Mitra .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, A., Zaman, S. (2015). Blue Carbon in Floral Community. In: Blue Carbon Reservoir of the Blue Planet. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2107-4_4

Download citation

Publish with us

Policies and ethics