Skip to main content

Temperature-Based Phenology Modeling and GIS-Based Risk Mapping: A Tool for Forecasting Potential Changes in the Abundance of Mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae)

  • Chapter
  • First Online:
New Horizons in Insect Science: Towards Sustainable Pest Management

Abstract

Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is a highly invasive and a polyphagous pest of worldwide importance. Its recent outbreak and rapid spread in Indian cotton growing belt caused large scale devastation. A study was undertaken with a basic assumption that the future distribution and abundance of P. solenopsis will be affected seriously by temperature alterations due to global climate change, which might further aggravate the yield losses. The population growth potential of P. solenopsis was estimated at six constant temperatures ranging from 15 to 40 °C. The phenology models established using best fitting functions in a rate summation and cohort up-dating approach were employed in a geographic information system for mapping population growth potentials according to real-time or interpolated temperature data, for both current and future climate to predict the impact of climate change. The risks for population establishment and survival, average numbers of generations and potential population increase/year were computed using interpolated daily minimum and maximum temperatures at a spatial resolution of 10 arc minutes obtained from worldclim database (www.worldclim.org). The real-time weather station data from two selected locations across India were used to analyze within-year variation of pest population increase due to seasonal climate fluctuations. The model predicted favorable temperature range for P. solenopsis development, survival, and reproduction within a range of 20–35 °C with maximum population growth potential and shorter generation length at 30 °C. The findings revealed significant changes in P. solenopsis activity under climate change scenario, including expansion of a geographical distribution range at higher latitudes and altitudes, marked increase in the number of generations/year and increased abundance and damage activity in present distribution range in India. The study generated knowledge on temperature-dependent population dynamics and growth potential of P. solenopsis crucial for undertaking agroecoregion specific management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A, Asifa Hameed, Saleem M, Khalil N, Saeed M, Malik NA (2012) Effect of temperature and relative humidity on the biology of cotton mealy bug (Phenacoccus solenopsis Tinsley). J Agric Res 50:89–101

    Google Scholar 

  • Arif MI, Rafiq M, Wazir S, Mehmodd N, Ghaffar A (2012) Studies on Cotton Mealybug, Phenacoccus solenopsis (Pseudococcidae: Homoptera), and its natural enemies in Punjab, Pakistan. Int J Agric Biol 14:557–562

    Google Scholar 

  • Asifa Hameed Aziz MA Aheer GM (2012) Impact of ecological conditions on biology of cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in laboratory. Pakistan J Zool 44:685–690

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Chahal SK, Bains GS, Dhaliwal LK (2008) Climate change: mitigation and adaptation. International Conference on Climate change, biodiversity and food security in the South Asian Region, 3–4 November, Punjab State Council for Science and Technology, Chandigarh and United Nations Educational, Scientific and Cultural Organization, New Delhi

    Google Scholar 

  • Dhawan AK, Singh K, Saini S, Mohindru B, Kaur A, Singh G, Singh S (2007) Incidence and damage potential of mealybug, Phenacoccus solenopsis Tinsley on cotton in Punjab. Indian J Ecol 34:110–116

    Google Scholar 

  • Fand BB (2012) Modeling the impact of climate change on potential geographic distribution of polyphagous mealybug Phenacoccus solenopsis in India pp 37–38 in Proceedings of the IVth National Symposium on Plant protection in horticultural crops- emerging challenges and sustainable pest management, organised by Association or the Advancement of Pest Management in Horticultural Ecosystems, Bangalore, 25–28 April. Indian Institute of Horticultural Research, Bangalore

    Google Scholar 

  • Fand BB, Gautam RD, Subhash Chander, Suroshe SS (2010) Life table analysis of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) under laboratory conditions. J Entomol Res 34:175–179

    Google Scholar 

  • Gautam RD (2008) Biological pest suppression, 2nd edn. Westville Publishing House, New Delhi

    Google Scholar 

  • Govindasamy B, Duffy PB, Coquard J (2003) High-resolution simulations of global climate, part 2: effects of increased greenhouse gases. Clim Dyn 21:391–404

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • IPCC (2007) Climate change- impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds). Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • Jhala RC, Bharpoda TM, Patel MG (2008) Phenacoccus solenopsis (Hemiptera: Pseudococcidae), the mealybug species recorded first time on cotton and its alternate host plants in Gujarat, India. Uttar Pradesh J Zool 28:403–406

    Google Scholar 

  • Kroschel J, Sporleder M, Tonnang HEZ, Juarez H, Carhuapoma P, Gonzales JC, Simon R (2013) Predicting climate-change- caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology 170:228–241.

    Google Scholar 

  • Nagrare VS, Kranthi S, Biradar VK, Zade NN, Sangode V, Kakde G, Shukla RM, Shivare D, Khadi BM, Kranthi KR (2009) Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), on cotton in India. Bull Entomol Res 99:537–541

    Article  CAS  PubMed  Google Scholar 

  • Nagrare VS, Kranthi S, Rishi Kumar, Dhara Jothi B, Amutha M, Deshmukh AJ, Bisane KD, Kranthi KR (2011) Compendium of cotton mealybugs. Central Institute for Cotton Research, Nagpur, p 42

    Google Scholar 

  • Nikam ND, Patel BH, Korat DM (2010) Biology of invasive mealy bug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Karnataka J Agric Sci 23:649–651

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144: 31–43

    Article  Google Scholar 

  • Oerke EC, Debne HW, Schonbeck F, Weber A (1994) Crop production and crop protection. Elsevier, Amsterdam

    Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect-pests. Agric Fort Meteorol 57:221–40

    Article  Google Scholar 

  • Prasad YG, Prabhakar M, Sreedevi G, Ramachandra Rao G, Venkateswarlu B (2012) Effect of temperature on development, survival and reproduction of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Crop Prot 39:81–88

    Article  Google Scholar 

  • Ramirez J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis. Working Paper 1. International Center for Tropical Agriculture, CIAT

    Google Scholar 

  • Reed W, Pawar CS (1981) Heliothis: a global problem. In: ICRISAT Proceedings of the International workshop on heliothis management, pp 9–14. November 15–20, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  CAS  PubMed  Google Scholar 

  • Sharpe PJH, DW DeMichele (1977) Reaction kinetics of poikilothermic developement. J Theor Biol 64:649–670

    Article  Google Scholar 

  • Sporleder M, Simon R, Juarez H, Kroschel J (2008) Regional and seasonal forecasting of the potato tuber moth using a temperature-driven phenology model linked with geographic information systems. In: Kroschel J, Lacey L (eds) Integrated pest management for the potato tuber moth, Phthorimaea operculella Zeller—a potato pest of global importance. tropical agriculture 20 advances in crop research 10. Margraf Publishers, Weikersheim

    Google Scholar 

  • Sporleder M, Simon R, Gonzales JC, Carhuapoma P, Juarez H, De Mendiburu F, Kroschel J (2009) ILCYM—Insect life cycle modelling (version 2.1): a software package for developing temperature-based insect phenology models with applications for regional and global pest risk assessments and mapping (User Manual). p 79 International Potato Center, Lima, Peru

    Google Scholar 

  • Sporleder M, Tonnang HEZ, Juarez H, Carhuapoma P, Gonzales JC, Simon R, Kroschel J (2012) ILCYM—Insect life cycle modeling (version 3.0): a software package for developing temperature-based insect phenology models with applications to regional and global analysis of insect population and mapping. (User Manual). 124, International Potato Center, Lima, Peru

    Google Scholar 

  • Suresh SR, Jothimani P, Sivasubramanian P, Karuppuchamy R, Samiyappan, Jonathan EI (2010) Invasive mealybugs of Tamil Nadu and their management. Karnataka J Agric Sci 23:6–9

    Google Scholar 

  • Sutherst R (2000) Climate change and invasive species: a conceptual framework. In: Mooney H, Hoobs R (eds) Invasive species in a changing world. Island Press, Washington DC, pp 211–240

    Google Scholar 

  • Tanwar RK, Jeyakumar P, Singh A, Jafri AA, Bambawale OM (2011) Survey for cotton mealybug, Phenacoccus solenopsis (Tinsley) and its natural enemies. J Env Biol 32:381–384

    CAS  Google Scholar 

  • Vennila S, Ramamurthy VV, Deshmukh A, Pinjarkar DB, Agarwal M, Pagar PC, Prasad YG, Prabhakar M, Kranthi KR, Bambawale OM (2010) A treatise on mealybugs of Central Indian cotton production system. Technical Bulletin No. 24, New Delhi: National Centre for Integrated Pest Management

    Google Scholar 

  • Vennila S, Prasad YG, Prabhakar M, Rishi Kumar, Nagrare V, Amutha M, Dharajyothi, Agarwal M, Sreedevi G, Venkateswarlu B, Kranthi KR, Bambawale OM (2011) Spatio-temporal distribution of host plants of cotton mealybug, Phenacoccus solenopsis Tinsley in India, Technical Bulletin No. 26, New Delhi: National Centre for Integrated Pest Management

    Google Scholar 

  • Ward NL, Masters GJ (2007) Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biol 13:1605–1615

    Article  Google Scholar 

Download references

Acknowledgments

This study is a part of the research project “Abiotic stresses affecting crop-insect pest interactions in the context of global climate change (Project Code-IXX08575)” of the School of Atmospheric Stress Management, National Institute of Abiotic Stress Management (NIASM), Baramati, Pune, Maharashtra (India). The authors gratefully acknowledge financial support from Indian Council of Agricultural Research, New Delhi. They are thankful to the Director, NIASM for providing all the necessary facilities and extending his cooperation and support to carry out present investigations. We are grateful to the Heads of the Department of Agrometeorology, Punjab Agricultural University, Ludhiana (Punjab) and Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola (Maharashtra) for providing temperature data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babasaheb B. Fand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Fand, B., Tonnang, H., Kumar, M., Kamble, A., Bal, S. (2015). Temperature-Based Phenology Modeling and GIS-Based Risk Mapping: A Tool for Forecasting Potential Changes in the Abundance of Mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). In: Chakravarthy, A. (eds) New Horizons in Insect Science: Towards Sustainable Pest Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2089-3_37

Download citation

Publish with us

Policies and ethics