Skip to main content

Biopesticides: Where We Stand?

  • Chapter
  • First Online:
Book cover Plant Microbes Symbiosis: Applied Facets

Abstract

Chemical pesticides are well known for their effective role in disease management because not only they act on a broad host range but production technology is also less expensive. However, the devastating part is their huge negative impact on the environment including the living beings of the planet. In spite of this, in the absence of suitable alternative, the use of synthetic pesticides has dominated around the globe. By the advent of greener approach of developing and using biopesticides, the situation is gradually changing but in fact can move far more swiftly in this direction which will be sustainable and eco-friendly. Although biopesticides are slowly replacing the chemical pesticides, a complete global look at the scenario indicates that the former and particularly the industries based on them are still in an insecure position in comparison to the chemicals which rule the agriculture. We can say that the biopesticides, although show a great promise, have not come up to the desired level so as to displace the dominance of chemicals. In this chapter, the global scenario of biopesticides is discussed emphasizing upon the current demand, use, constraints, and remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Khan IA, Hussain Z, Shah SIA, Ahmad M (2007) Comparison of a biopesticide with some synthetic pesticides against aphids in rapeseed crop. Sarhad J Agric 23:1117–1120

    Google Scholar 

  • Aizawa K, Fujiyoshi N (1973) Development of bacterial insecticides in Japan. J Ferment Technol 51:363–365

    Google Scholar 

  • Aizawa K, Ishiwata S (2001) His discovery of sottokin (Bacillus thuringiensis) in 1901 and subsequent investigations in Japan. In: Ohba M, Nakamura O, Mizuki E, Akao T (eds) Proceedings of a centennial symposium commemorating Ishiwata’s discovery of Bacillus thuringiensis. Kurume, Japan, pp 1–14

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Inter Discip Toxicol 2:1–12

    Google Scholar 

  • Alam G (1994) Biotechnology and sustainable agriculture: lessons from India, Technical Paper No. 103. OECD Development Centre, Paris

    Google Scholar 

  • Alam G (2000) A study of biopesticides and biofertilizers in Haryana, India Gatekeeper Series No. 93. IIED, UK

    Google Scholar 

  • Alavanja MC (2009) Pesticides use and exposure extensive worldwide. Rev Environ Health 24:303–309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ali S, Zafar Y, Ali MG, Nazir F (2008) Bacillus thuringiensis and its application in agriculture. Afr J Biotechnol 9:2022–2031

    Google Scholar 

  • Alves SB, Lopes RB, Vieira S, Tamai MA (2008) Fungos entomopatogénicos usados no controle de pragasna America Latina. In: Alves SB, Biaggioni LR (eds) Controle microbiano de pragasna America Latina. FEALQ, Piracicaba, pp 69–110

    Google Scholar 

  • Amin N (2013) Teaching of biopesticide development as a technoprenuership opportunity in plant protection. J Biol Agric Healthc 3:2224–3208

    Google Scholar 

  • Anand S, Reddy J (2009) Biocontrol potential of Trichoderma sp against plant pathogens. Inter J Agri Sci 2:30–39

    Google Scholar 

  • Armes NJ, Jadhav DR, Bond GS, King ABS (1992) Insecticide resistance in Helicoverpa armigera in south India. Pest Sci 34:355–364

    CAS  Google Scholar 

  • Aronson A, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arora NK, Kumar V, Maheshwari DK (2001) Constraints, development and future of the inoculants with special reference to rhizobial inoculants. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Singh and Singh, Dehradun, pp 241–245

    Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Curr Sci 95:90–94

    Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 97–116

    Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 239–258

    Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe symbiosis- fundamentals and advances. Springer, India, pp 411–449

    Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395

    PubMed  CAS  Google Scholar 

  • Bailey DJ, Gilligan CA (2004) Modeling and analysis of disease induced host growth in the epidemiology of take all. Phytopathology 94:535–540

    PubMed  CAS  Google Scholar 

  • Baird C, Cann M (2008) Pesticides. In: Environmental chemistry. W H Freeman and Company, New York

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria use in agriculture. Biotech Adv 6:729–770

    Google Scholar 

  • Bateman RP (1997) Methods of application of microbial pesticide formulations for the control of locusts and grasshoppers. Memoires Entomol Soc Canada 171:69–81

    Google Scholar 

  • Benuzzi M (2004) What will be the future for BCAs? The industry’s point of view on problems in developing BCAs. IOBC/WPRS Bull 27(8):429–431

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    PubMed  CAS  Google Scholar 

  • Bernstein IL, Bernstein JA, Miller M, Tierzieva S, Bernstein DI, Lummus Z, Selgrade MK, Doerfler DL, Seligy VL (1999) Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environ Health Persp 107:575–582

    CAS  Google Scholar 

  • Bettiol W (2011) Biopesticide use and research in Brazil. Outlooks Pest Manag 22:280–283

    Google Scholar 

  • Bezchlebová J, Cernohlávková J, Lána J, Sochová I, Kobeticová K, Hofman J (2007) Effects of toxaphene on soil organisms. Ecotoxicol Environ Saf 68:326–334

    PubMed  Google Scholar 

  • Bora LC, Deka SN (2007) Wilt disease suppression and disease enhancement in (Lycopersicon esculentum) by application of Pseudomonas fluorescens based biopesticide (Biofor-Pf) in Assam. Indian J Agr Sci 77:490–494

    Google Scholar 

  • Botto EN (1996) Control biológico de plagas en La Argentina: informe de la situación actual. In: Zapater C (ed) El control biológico en América Latina. Buenos Aires, pp 1–8

    Google Scholar 

  • Brar SK, Tyagi VRD, Valéro JR (2006) Recent advances in downstream processes and formulations of Bacillus thuringiensis based biopesticide. Process Biochem 41:323–342

    CAS  Google Scholar 

  • Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3:1135

    PubMed  PubMed Central  Google Scholar 

  • Bull CT, Stack JP, Smilanick JL (1997) Pseudomonas syringae strains ESC-10 and ESC-11 survive in wounds on citrus and control green and blue molds of citrus. Biol Control 8:81–88

    Google Scholar 

  • Burges HD, Croizier G, Huber J (1980a) A review of safety tests on baculoviruses. Entomophaga 25:329–340

    Google Scholar 

  • Burges HD, Huber J, Croizier G (1980b) Guidelines for safety tests on insect viruses. Entomophaga 25:341–348

    Google Scholar 

  • Business Wire (2010) Research and markets: the 2010 biopesticides market in Europe & company index – opportunities exist which could raise the total market to $200 million by 2020. New York

    Google Scholar 

  • CABI (2010) The 2010 worldwide biopesticides: market summary. CPL Business Consultants, London, p 40

    Google Scholar 

  • Carina Webber (ed) (2008) How to grow crops without endosulfan, PAN Germany

    Google Scholar 

  • Carlton B (1988) Development of genetically improved strains of Bacillus thuringiensis. In: Hedin P, Menn J, Hollingworth R (eds) Biotechnology for crop protection. American Chemical Society, Washington, DC, pp 260–279

    Google Scholar 

  • Carson R (1962) The silent spring. Houghton Mifflin, USA

    Google Scholar 

  • Cazorla FM, Romero D, Garcia AP, Lugtenberg BJJ, Vicente A, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J App Microbiol 103:1950–1959

    CAS  Google Scholar 

  • Chakravarty G, Kalita MC (2011) Management of bacterial wilt of brinjal by P. fluorescens based bioformulation. ARPN J Agri Biol Sci 6(3):1–11

    Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19:275–283

    CAS  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves GWP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 1573:1987–1998

    Google Scholar 

  • Chapple AC, Downer RA, Bateman RP (2000) Theory and practice of microbial insecticide application. In: Lacey LA, Kaya HA (eds) Field manual of techniques in invertebrate pathology. Kluwer, Dordrecht, pp 5–37

    Google Scholar 

  • Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54

    PubMed  CAS  Google Scholar 

  • Cherry AJ (2004) Public-private partnerships for development and implementation of entomopathogenic viruses as bioinsecticides for key lepidopteran pests in Ghana and Benin, West Africa, Final Technical Report, Project R7960. Natural Resources Institute, Chatham, p 42

    Google Scholar 

  • Cherry AC, Gwynnn RL (2007) Perspective on the development of biocontrol in Africa. Biocontrol Sci Technol 17:665–676

    Google Scholar 

  • Chunxue C, Sunjeong P, McSpadden Gardener BB (2010) Biopesticide controls of plant diseases: resources and products for organic farmers in Ohio. Fact Sheet Agri Nat Res 1–10

    Google Scholar 

  • Clemson HGIC (2007) Organic pesticides and biopesticides, Clemson extension, home and garden information center. Clemson University, Clemson

    Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Coˆnsoli FL, Haas F, Mason PG, Parra JRP (2009) In: The use and exchange of biological control agents for food and agriculture, Report prepared for the FAO genetic resources commission by the IOBC global commission on biological control and access and benefit sharing, IOBC, Bern

    Google Scholar 

  • Conis E, MS, MJ (2010) Debating the health effects of DDT: Thomas Jukes, Charles Wurster and the fate of an environmental pollutant, Public Health Rep, 125:337–342

    Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    CAS  Google Scholar 

  • Cory JS, Hoover K (2006) Plant-mediated effects in insect–pathogen interactions. Trends Ecol Evol 21(5):278–286

    PubMed  Google Scholar 

  • Cory JS, Myers JH (2003) The ecology and evolution of insect baculoviruses. Annual Rev Ecol Evol Syst 34:239–272

    Google Scholar 

  • CPL Business Consultants (2006) Biopesticides 2007. CPL Business Consultants, Wallingford

    Google Scholar 

  • CPL Business Consultants (2007) Biopesticides 2007, a how to do it guide to biopesticides, vol 5. CPL Business Consultants, Wallingford

    Google Scholar 

  • CPL Business Consultants (2010) The 2010 worldwide biopesticides market summary, vol 1. CPL Business Consultants, Wallingford

    Google Scholar 

  • Cuthbertson AGS, Walters KFA, Northing P (2005) The susceptibility of immature of Bemisia tabaci to the entomopathogenic fungus Lecanicillium muscarium on tomato and verbena foliage. Mycopathologia 159:23–29

    PubMed  Google Scholar 

  • D’Amico V (2007) Baculovirus in biological control: a guide to natural enemies in North America. http://www.nysaes.cornell.edu/ent/biocontrol/pathogen/baculoviruses

  • Darbro JM, Thomas MB (2009) Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am J Trop Med Hyg 80:992–997

    PubMed  Google Scholar 

  • De Faria MR, Wright SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Google Scholar 

  • Doekes G, Larsen P, Sigsgaard T, Baelum J (2004) IgE sensitization to bacterial and fungal biopesticides in a cohort of Danish greenhouse workers: the BIOGART study. Am J Ind Med 46:404–407

    PubMed  CAS  Google Scholar 

  • Dominguesa FC, Queiroza JA, Cabralb JMS, Fonsecab LP (2000) The influence of culture conditions on mycelial structure and cellulose production by Trichoderma reesei rut C-30. Enz Microb Technol 26:394–401

    Google Scholar 

  • Donaldson D, Kiely T, Grube A (1995) Pesticide’s industry sales and usage 1998–1999 market estimates, report no. EPA-733-R-02-OOI. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Downie D (2003) Global POPs policy: the 2001 Stockholm convention on persistent organic pollutants. In: Downie D, Fenge T (eds) Northern lights against POPs: combating toxic threats in the Arctic. McGill-Queens University Press, Montreal

    Google Scholar 

  • Dresdend D (1948) Site of action of D.D.T. and cause of death after acute D.D.T. poisoning. Nature 162:1000–1001

    Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Google Scholar 

  • Dunne C, Moënne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Plant Pathol 47:299–307

    Google Scholar 

  • Edwards CA, Thompson AR (1973) Pesticides and the soil fauna. Residue Rev 45:1–79

    PubMed  CAS  Google Scholar 

  • Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschuz. Schnreihe dtsch Phytomed Ges 8:17–31

    CAS  Google Scholar 

  • Elumalai LK, Rengasamy R (2012) Synergistic effect of seaweed manure and Bacillus sp. on growth and biochemical constituents of Vigna radiata L. J Biofertil Biopestici 3:121–128

    Google Scholar 

  • England LS, Vincent ML, Trevors JT, Holmes SB (2004) Extraction, detection and persistence of extracellular DNA in forest litter microcosms. Mol Cell Probes 18:313–319

    PubMed  CAS  Google Scholar 

  • Eskenazi B, Bradman A, Castorina R (1999) Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect 107:409–419

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eskenazi B, Lisa GR, Amy RM, Asa B, Kim H, Nina H, Caroline J, Laura F, Dana BB (2008) Pesticide toxicity and the developing brain. Basic Clin Pharmacol Toxicol 102:228–236

    PubMed  CAS  Google Scholar 

  • EUPD (2010) European union pesticides database. http://ec.europa.eu/food/plant/protection/evaluation/database_act_subs_en.htm

  • Evans J, Wallace C, Dobrowolski N (1993) Interaction of soil type and temperature on the survival of Rhizobium leguminosarum bv Viciae. Soil Biol Biochem 25:1153–1160

    Google Scholar 

  • Farah J (1994) Pesticide policies in developing countries: do they encourage excessive use? Discussion paper no. 238. IBRD/World Bank, Washington, DC

    Google Scholar 

  • Felix MI (1958) Men, molds and history. MD Publication, New York

    Google Scholar 

  • Fenske RA, Lu C, Simcox NJ, Loewenherz C, Touchstone J, Moate TF, Allen EH, Kissel JC (2000) Strategies for assessing children’s organophosphorus pesticide exposures in agricultural communities. J Expo Anal Environ Epidemiol 10:662–671

    PubMed  CAS  Google Scholar 

  • Fitt GP (1994) Cotton pest management: part 3, an Australian perspective. Ann Rev Entomol 39:543–562

    Google Scholar 

  • Fitt GP (2004) Implementation and impact of transgenic Bt cottons in Australia. In: Cotton production for the new millennium, Proceedings third world cotton research conference, Cape Town, South Africa, Agricultural Research Council – Institute for Industrial Crops, Pretoria, South Africa, pp 371–381

    Google Scholar 

  • Frampton GK, Jansch S, Scott-Fordsmand JJ, Römbke J, Van den Brink P (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. J Environ Toxicol Chem 25:2480–2489

    CAS  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452

    PubMed  PubMed Central  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Ann Rev Phytopathol 43:337–359

    CAS  Google Scholar 

  • Gaind S, Kaushik BD (2008) Biofertilizers for sustainability, agroresources and technology. In: Maheshwari DK, Dubey RC (eds) Potential microorganisms for sustainable agriculture: a techno-commercial perspective. IK International Publishing House Pvt Ltd, New Delhi, pp 67–87

    Google Scholar 

  • Ganeshan G, Kumar MA (2006) Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J Plant Interact 1:123–134

    Google Scholar 

  • Gelernter WD (2005) Biological control products in a changing landscape. In: Proceedings of the BCPC international congress, vol 1, Glasgow, Scotland, The British Crop Protection Council, Hampshire, UK, pp 293–300

    Google Scholar 

  • Gelernter WD (2007) Microbial control in Asia: a bellwether for the future? J Invertebr Path 95:161–167

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    PubMed  CAS  Google Scholar 

  • Gill JJ, Hollyer T, Sabour PM (2007) Bacteriophages and phage-derived products as antibacterial therapeutics. Expert Opin Ther Pat 17:1341–1350

    CAS  Google Scholar 

  • Gill RJ, Rodriguez OR, Raine NE (2012) Combined pesticide exposure severely affects individual and colony level traits in bees. Nature 491:105–108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester

    Google Scholar 

  • Gonzalez JΜ Jr, Brown ΒJ, Carlton ΒC (1982) Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Ρroc Natl Acad Sci 79:6951–6955

    CAS  Google Scholar 

  • Greaves MP (1993) Formulation of microbial herbicides to improve performance in the field. In: Proceedings of 8th EWRS symposium quantitative approaches in weed and herbicide research and their practical application. Braunschweig, Germany, pp 219–225

    Google Scholar 

  • Green M, Heumann M, Sokolow R, Foster LR, Bryant R, Skeels M (1990) Public health implications of the microbial pesticide Bacillus thuringiensis: an epidemiological study, Oregon, 1985–86. Amer J Public Health 80(7):848–852

    CAS  Google Scholar 

  • Griswold E (2012) How ‘silent spring’ ignited the environmental movement. http://www.nytimes.com/2012/09/23/magazine/how-silent-spring-ignited-the-environmental movement.html?pagewanted=all&_r=0

  • Gröner A (1986) Specificity and safety of baculoviruses. In: Granados RR, Federici BA (eds) The biology of baculoviruses, vol 2, Practical application for insect control. CRC Press, Boca Raton, pp 177–202

    Google Scholar 

  • Groote HD, Douro-Kpindou O-K, Ouambama Z, Gbongboui C, Müller D, Attignon S, Lomer C (2001) Assessing the feasibility of biological control of locusts and grasshoppers in West Africa: incorporating the farmers’ perspective. Agric Hum Values 18(4):413–428

    Google Scholar 

  • Guerra PT, Wong LJG, Roldán HM (2001) Bioinseticidas: Su empleo, produción y commercialization en México. Ciencia UANL 4:143–152

    Google Scholar 

  • Guillon ML (2003) Regulation of biological control agents in Europe. In: Roettger U, Reinhold M (eds) International symposium on biopesticides for developing countries. CATIE, Turrialba, pp 143–147

    Google Scholar 

  • Gupta PK (2006) Status of biopesticides-Indian scene. Toxicol Int 13:65–73

    Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186–188

    Google Scholar 

  • Gupta CP, Dubey RC, Kang SC, Maheshwari DK (2001) Antibiosis mediated necrotrophic effect of Pseudomonas GRC2 against two fungal pathogens. Curr Sci 81:91–94

    Google Scholar 

  • Haas D, De’fago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    PubMed  CAS  Google Scholar 

  • Habib MEM, de Andrade CFS (1991) Controle microbiano de insetos com o uso de bactérias. Informe Agropecuário 15:21–26

    Google Scholar 

  • Halim H, Ali MM (1998) Training and professional development. In: Swanson BE, Bentz RP, Sofranko AJ (eds) Improving agricultural extension: a reference manual. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Hallett SG (2005) Where are the bioherbicides? Weed Sci 53:404–415

    CAS  Google Scholar 

  • Harman GE (2005) Overview of mechanisms and uses of Trichoderma spp. 648. Phytopathology 96:190–194

    Google Scholar 

  • Hewson I, Brown JM, Gitlin SA, Doud DF (2011) Nucleopolyhedrovirus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine. Microbial Ecol 62:48–57

    Google Scholar 

  • Hidaka Y (1933) Utilization of natural enemies for control of the pine caterpillar. J Jpn Forest Soc 15:1221–1231

    Google Scholar 

  • Hill KR, Robinson G (1945) Fatal D.D.T. poisoning. Br Med J 2:845–847

    PubMed Central  Google Scholar 

  • Hoffland E, Hakulinen J, van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762

    Google Scholar 

  • Hunter DM, Milner RJ, Spurgin PA (2001) Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Bull Entomol Res 91:93–99

    PubMed  CAS  Google Scholar 

  • Ibrahim L, Butt TM, Beckett A, Clark SJ (1999) The germination of oil formulated conidia of the insect pathogen, Metarhizium anisopliae. Mycol Res 103:901–907

    Google Scholar 

  • ICAMA (2008) Pesticide manual, the institute for the control of agrochemicals. Ministry of agriculture, China (in Chinese)

    Google Scholar 

  • Ignacimuthu S, Sen A, Janarthanan S (eds) (2001) Microbials in insect pest management. Science Publishers, Enfield, p 188

    Google Scholar 

  • Ignoffo CM (1975) Evaluation of in vivo specificity of insect viruses. In: Summers M, Engler R, Falcon LA, Vail PV (eds) Baculoviruses for insect pest control. Amerc Soc Microbiol, Washington, DC, pp 52–57

    Google Scholar 

  • Iida A, Sanekata M, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Rudewicz PJ, Tachikawa E (1994) Fungal metabolites XVI structures of new peptaibols, trichokindins I–VII, from the fungus Trichoderma harzianum. Chem Pharm Bull 42:1070–1075

    PubMed  CAS  Google Scholar 

  • Industrial Equipment News (2013) Biopesticides market to reach $1 billion in 2010, West Afton Ave, Yardley, PA

    Google Scholar 

  • IOBC (2008) International organization for biological control. IOBC Newsletter 84:5–7

    Google Scholar 

  • Irigaray FJSC, Marco-Mancebon V, Perez-Moreno I (2003) The entomopathogenic fungus Beauveria bassiana and its compatibility with triflumuron: effects on the two-spotted spider mite Tetranychus urticae. Biol Control 26:168–173

    Google Scholar 

  • Jeong JK, Sang GL, Siwoo L, Hyeong JJ (2010) South Korea. In: Kabaluk, JT, Antonet MS, Mark SG, Stephanie GW (eds) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global

    Google Scholar 

  • Jones KA, Westby A, Reilly PJA, Jeger MJ (1993) Exploitation of microorganisms in the developing countries of the tropics. In: Jones DG (ed) Exploitation of microorganisms. Chapman and Hall, London, pp 343–370

    Google Scholar 

  • Joung KC, Coˆte’ JC (2000) A review of the environmental impacts of the microbial insecticide Bacillus thuringiensis. In: Agriculture and Agri- Food Canada, Technical Bulletin No. 29

    Google Scholar 

  • Kabaluk T, Gazdik K (2005) Directory of microbial pesticides for agricultural crops in OECD countries, Agriculture and Agri-Food Canada. http://www.agr.gc.ca/env/pest/index_-e.php??s1=pub&page=micro

  • Kabaluk JT, Svircev AM, Goette lMS, Woo SG (eds) (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, p 99

    Google Scholar 

  • Kabi MC (1997) Impact of biofertilizer on rural development. In: Proceedings of National Conference on impact of biotechnology and modern horticulture in rural development. Jadavpur University, Calcutta

    Google Scholar 

  • Keane WT (1972) Eliminate DDT? Quest for an advantageous benefit: risk ratio. Sci Total Environ 2:141–163

    Google Scholar 

  • Khalil IAIM, Appanna V, Rick DP, Ronald JH, Lucie G, Tharcisse B, Kelvin L, René P, Kathy AD, Ian KM, Sharon LIL, Kithsiri EJ (2013) Efficacy of Bio-Save 10LP and Bio-Save 11LP (Pseudomonas syringae) for management of potato diseases in storage. Biol Control 64:315–322

    Google Scholar 

  • Khalique D, Ahmed K (2001) Synergistic interaction between Bacillus thuringiensis (Berliner) and Lambda-cyhalothrin (Pyrethroid) against, chickpea pod borer, Helicoverpa armigera (Huebner). Pakistan J Biol Sci 4:1120–1123

    Google Scholar 

  • Khandelwal M, Datta S, Mehta J, Naruka R, Makhijani K, Sharma G, Kumar R, Chandra S (2012) Isolation, characterization and biomass production of Trichoderma viride using various agro products- A biocontrol agent. Adv Appl Sci Res 3:3950–3955

    CAS  Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa –antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57:708–713

    PubMed  CAS  Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacologia 3:641–656

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Knutson RD, Taylor CR, Penson JB, Smith EG (1990) Economic impacts of reduced chemical use. Knutson and Associates, College Station

    Google Scholar 

  • Konradsen F, Hoekb CDC, Hutchinson G, Daisley H, Singh S, Eddleston M (2003) Reducing acute poisoning in developing countries-options for restricting the availability of pesticides. Toxicology 192:249–261

    PubMed  CAS  Google Scholar 

  • Koppenhöfer AM, Fuzy AM (2003) Biological and chemical control of Asiatic garden beetle Maladera castanea (Coleoptera Scarabaeidae). J Econ Entomol 96:1076–1082

    PubMed  Google Scholar 

  • Koul O, Dhaliwal GS, Marwaha SS, Arora JK (2003) Future perspectives in. In: Koul O, Dhaliwal GS, Marwaha SS, Arora JK (eds) Biopesticides and pest management, vol 1. Campus Books International, New Delhi, pp 386–388

    Google Scholar 

  • Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali S, Russell D (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460

    CAS  Google Scholar 

  • Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofert Biopest 3:1–3

    CAS  Google Scholar 

  • Kunimi Y (1998) Japan. In: Hunter-Fujita HR, Entwistle PF, Evans HF, Crook NF (eds) Insect viruses and pest management. Wiley, Chichester, pp 269–279

    Google Scholar 

  • Kunimi Y (2007) Current status and prospects on microbial control in Japan. J Invertebr Pathol 95:181–186

    PubMed  Google Scholar 

  • Landrigan PJ, Claudio L, Markowitz SB, Berkowitz GS, Brenner BL, Romero H, Wetmur JG, Matte TD, Gore AC, Godbold JH, Wolff MS (1999) Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect 107:431–437

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lapointe R, Thumbi D, Lucarotti CJ (2012) Recent advances in our knowledge of Baculovirus: molecular biology and its relevance for the registration of Baculovirus-based products for insect pest population control. In: Soloneski S (ed) Integrated pest management and pest control – current and future tactics. Intech, Europe, pp 481–522

    Google Scholar 

  • Le Conte JL (1874) Hints for the promotion of economic entomology. Am Assoc Adv Sci 22:11–22

    Google Scholar 

  • Leng P, Zhang Z, Guangtang P, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873

    CAS  Google Scholar 

  • Lisansky S (1997) Microbial biopesticides, In: Evans HF (ed) Microbial insecticides, Novel or necessity? Proceedings No. 68. British crop protection council, Farnham, UK, pp 3–10

    Google Scholar 

  • Liu CJ, Men WJ, Liu YJ (2002) The pollution of pesticides in soils and its bioremediation. Syst Sci Compr Stud Agric 18:295–297

    Google Scholar 

  • Lomer C (2001) Assessing the feasibility of biological control of locusts and grasshoppers in West Africa: incorporating the farmers’ perspective. Agric Hum Value 18:413–428

    Google Scholar 

  • Lomer CJ, Prior C (eds) (1992) Biological control of locusts and grasshoppers. CAB International, Wallingford

    Google Scholar 

  • Longnecker MP, Rogan WJ, Lucier G (1997) The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu Rev Public Health 18:211–244

    PubMed  CAS  Google Scholar 

  • MacGregor JT (2006) Genetic toxicity assessment of microbial pesticides: needs and recommended approaches. Intern Assoc Environ Mutagen Soc 1–17

    Google Scholar 

  • Manjunath TM, Kumar N, JB, Nagaraj DN (1992) A report on the survey for natural enemies of the Mauritius thorn, Caesalpinia decapetala in India, Unpublished Report of Bio-Control Research Laboratories, Bangalore, India

    Google Scholar 

  • Market and Market (2013) Report code: CH 1266 Global biopesticides market – trends and forecasts (2012–2017), India

    Google Scholar 

  • Marrone PG (1994) Present and future use of Bacillus thuringiensis in integrated pest management systems: an industrial perspective. Biocon Sci Technol 4:517–526

    Google Scholar 

  • Marrone PG (2007) Barriers to adoption of biological control agents and biological pesticides, CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources 2(51). CAB International, Wallingford

    Google Scholar 

  • Martin PAW, Traverse RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mazid S, Kalita JC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1:169–178

    Google Scholar 

  • McCauley L, Beltran M, Phillips J, Lasarev M, Sticker D (2001) The Oregon migrant farmworkers community: an evolving model for participatory research. Environ Health Perspect 109:449–455

    PubMed  PubMed Central  Google Scholar 

  • McCoy CW (1996) Pathogens of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) World crop pests: eriophyoid mites, their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 481–490

    Google Scholar 

  • McCoy CW, Samson RA, Boucias DG (1988) Entomogenous fungi. In: IgnoVo CM, Mandava NB (eds) Handbook of natural pesticides, vol 5, Microbial pesticides part A, Entomogenous protozoa and fungi. CRC Press, Boca Raton, pp 151–236

    Google Scholar 

  • McWilliam A (2007) Environmental impact of baculoviruses, FAO.R7299_FTR_anx3. http://www.fao.org/docs/eims/upload/agrotech/2003/R7299_FTR_anx3.pdf

  • Miller LK, Lu A (1997) The molecular basis of baculovirus host range. In: Miller LK (ed) The baculoviruses. Plenum Press, New York, pp 217–235

    Google Scholar 

  • Milner RJ (2000) Current status of Metarhizium as a mycoinsecticide in Australia. Biocontrol News Inf 21:47N–50N

    Google Scholar 

  • Milner RJ, Jenkins K (1996) Metarhizium: a versatile mycoinsecticide of the future. Prof Pest Manag 1:32–36

    Google Scholar 

  • Milner RJ, Baker GL, Hooper GHS, Prior C (1997) Development of a mycoinsecticide for the Australian plague locust. In: Krall S, Peveling R, Diallo DB (eds) New strategies in locust control. Birkhäuser, Basel, pp 177–183

    Google Scholar 

  • Moscardi F, de Souza Lobo M, de Castro Batista ME, Moscardi LM, Szewczyk B (2011) Baculovirus pesticides – present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel P (eds) Microbes and microbial technology. Springer, New York, pp 415–445

    Google Scholar 

  • Nakkeeran S, Dilantha Fernando WG, Zaki A (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • National farmers Policy (2007) Department of Agriculture and Cooperation, Ministry of Agriculture Government of India, India

    Google Scholar 

  • Noma T, Strickler K (2000) Effects of Beauveria bassiana on Lygus Hesperus (Hemiptera: Miridae) feeding and oviposition. Environ Entmol 29:394–402

    Google Scholar 

  • O’Brien KP, Franjevic S, Jones J (2009) Green chemistry and sustainable agriculture: the role of biopesticides, advancing green chemistry. http://advancinggreenchemistry.org/wp-content/uploads/Green-Chem-and-Sus.-Ag.-the-Role-of-Biopesticides.pdf

  • Oerke EC, Dehne HW, Schnbeck F, Weber A (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Ohba M, lwahana H, Asano S, Suzuki N, Sato R, Hori H (1992) A unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specific for scarabaeid beetles. Lett App Microbiol 14:54–57

    Google Scholar 

  • Olckers T (1999) Introduction: biological control of weeds in South Africa (1990–1998), African Entomology, Memoir No 1

    Google Scholar 

  • Patrick W, Kaskey J (2012) Biopesticide: killer bugs for hire. Bloomberg Business Week. http://www.businessweek.com/articles/2012-07-19/biopesticides-killer-bugs-for-hire

  • Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40:34–39

    CAS  Google Scholar 

  • Pertot I, Gobbin D, De Luca F, Prodorutti D (2008) Methods of assessing the incidence of Armillaria root rot across viticultural areas and the pathogen’s genetic diversity and spatial–temporal pattern in northern Italy. Crop Prot 27:1061–1070

    Google Scholar 

  • Pimentel D, Greiner A (1996) Environmental and socio-economic costs of pesticide use. In: Pimentel D (ed) Techniques for reducing pesticides: environmental and economic benefits. Wiley, Chichester

    Google Scholar 

  • Powles RJ, Rogers PL (1989) Bacillus toxin for insect control – a review. Aust J Biotechnol 3:223–228

    CAS  Google Scholar 

  • Prasetphol S, Areekul P, Buranarerk A, Kritpitayaavuth M (1969) Life history of orange dog butterfly and its microbial control, technical bulletin no.10. Department of Agriculture, Bangkok

    Google Scholar 

  • Pray CE, Nagarajan L (2010) Price controls and biotechnology innovation: are state government policies reducing research and innovation by the Ag biotech industry in India? Ag Bio Forum 13:297–307

    Google Scholar 

  • Pray CE, Nagarajan L (2012) Innovation and research by private agribusiness in India, IFPRI distribution paper 118. IFPRI, Washington, DC

    Google Scholar 

  • Qiu J (2013) Organic pollutants poison the roof of the world: accumulation of DDT in Himalayas exceeds that seen in Arctic, Nature News

    Google Scholar 

  • Quandt SA, Arcury TA, Rao P, Snively BM, Camann DE, Doran AM, Yau AY, Hoppin JA, Jackson DS (2004) Agricultural and residential pesticides in wipe samples from farmworker family residences in North Carolina and Virginia. Environ Health Perspect 112:382–387

    PubMed  PubMed Central  Google Scholar 

  • Quinlan RJ (1990) Registration requirements and safety considerations for microbial pest control agents in the European economic community. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC Press, Boca Raton, pp 11–18

    Google Scholar 

  • Quinlan RJ, Gill A (2006) The world market for microbial biopesticides, overview volume. CPL Business Consultants, Wallingford, p 26

    Google Scholar 

  • Rabindra RJ (2001) Emerging trends in microbial control of crop pests. In: Rabindra RJ, Kennedy JS, Sathiah N, Rajasekaran B (eds) Microbial control of crop pests. Tamil Nadu Agriculture University, Coimbatore, pp 110–127

    Google Scholar 

  • Rabindra RJ (2005) Current status of production and use of microbial pesticides in India and the way forward. In: Rabindra RJ, Hussaini SS, Ramanujam B (ed) Microbial biopesticide formulations and application, Technical document No.55, Project directorate of biological control, pp 1–12

    Google Scholar 

  • Radcliffe EB, Hutchison WD, Cancelado RE (eds) (2009) Integrated pest management: concepts, tactics, strategies and case studies. Cambridge University Press, New York

    Google Scholar 

  • Ranga Rao GV, Rupela OP, Rameshwar Rao V, Reddy YVR (2007) Role of biopesticides in crop protection: present status and future prospects. Ind J Plant Prot 35:1–9

    Google Scholar 

  • Raymond B, Hartley SE, Cory JS, Hails RS (2005) The role of food plant and pathogen-induced behavior in the persistence of a nucleopolyhedrovirus. J Invert Patho 88:49–57

    Google Scholar 

  • Reeda EM, Springetta BP (1971) Large-scale field testing of a granulosis virus for the control of the potato moth (PhthorimaeaOperculella (Zell.) (Lep., Gelechiidae)). Bull Ent Res 61:223–233

    Google Scholar 

  • BCC Research (2012) Global markets for biopesticides, Report code: CHM029D, Business Communication Company Research, LLC, USA

    Google Scholar 

  • Retchelderfer K (1984) Factors affecting the economic feasibility of the biological control of weeds. In: Delfoss ES (ed) Proceedings of VI international symposium on biological control of weeds, Agr Can Bull, p 135–144

    Google Scholar 

  • Roettger U, Reinhold M (eds) (2003) International symposium on biopesticides for developing countries, CATIE, Turrialba, Costa Rica

    Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    PubMed  CAS  Google Scholar 

  • Roy A, Moktan B, Sarkar PK (2007) Characteristics of Bacillus cereus isolates from legume-based Indian fermented foods. Food Contr 18:1555–1564

    CAS  Google Scholar 

  • Rushtapakomchai W (2003) Use and production of biopesticides in Thailand. In: Roettger U, Reinhold M (eds) International symposium on biopesticides for developing countries. CATIE, Turrialba, pp 126–130

    Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    PubMed  CAS  Google Scholar 

  • Schneider W (2006) US EPA Regulation of biopesticides, microbial and biochemical pesticide regulation. In: REBECA workshop on current risk assessment and regulation practice. Salzau, Germany

    Google Scholar 

  • Schofield DA, Bull CT, Rubio I, Wechter WP, Westwater C, Molineux IJ (2012) Development of an engineered bioluminescent reporter phage for detection of bacterial blight of crucifers. Appl Environ Microbiol 78:3592–3598

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schönbeck F, Dehne HW (1986) Use of microbial metabolites inducing resistance against plant pathogens. In: Fokkema NJ, Van den Heuvel J (eds) Microbiology of the Phyllosphere. Cambridge University Press, UK, pp 363–377

    Google Scholar 

  • Shah-Smith DA, Burns RG (1997) Shelf-life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coating. Biocontrol Sci Technol 7:65–74

    Google Scholar 

  • Shukla R, Shukla R (2012) Market potential for biopesticides: a product for agricultural. IJMRR 2:91–99

    Google Scholar 

  • Siegel JP, Shadduck JA (1990) Clearance of Bacillus sphaericus and Bacillus thuringiensis ssp. israelensis from mammals. J Econ Entomol 83:347–355

    PubMed  CAS  Google Scholar 

  • Sinclair M, Martha T (2001) Going against the grain: agricultural crisis and transformation. Oxfam Americas, Boston

    Google Scholar 

  • Singleton PW, Boonkerd N, Carr TJ, Thompson JA (1996) Technical and market constraints limiting legume inoculant use in Asia. In: Extending nitrogen fixation research to farmers’ fields: proceedings of an international workshop on managing legume nitrogen fixation in the cropping system of Asia. ICRISAT Asia Centre, India

    Google Scholar 

  • Sosa-Gomez DR, Moscardi F (1998) Laboratory and field studies on the infection of stink bugs, Nezara viridula, Piezodorus guildinii, and Euschistus heros (Hemiptera: Pentatomidae) with Metarhizium anisopliae and Beauveria bassianain. Brazil J Invertebr Pathol 2:115–120

    Google Scholar 

  • Steinhaus EA (1949) Principles of insect pathology. McGraw Hill Co, New York

    Google Scholar 

  • Steinhaus EA (1957) Microbial diseases of insects. Annu Rev Microbiol 11:165–182

    PubMed  CAS  Google Scholar 

  • Steinhaus EA (1975) Disease in a minor chord. Ohio State University Press, Columbus

    Google Scholar 

  • Steinwand B (2008) Biopesticide ombudsman (personal communication). US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Stewart A (2001) Commercial biocontrol – reality or fantasy? Australasian Plant Pathol 30:127–131

    Google Scholar 

  • Stewart A, Hill R, Stark C (2011) Desktop evaluation on commercially available microbial-based products for control or suppression of Pseudomonas syringae pv. Actinidiae. Bio Prot Res Centre, pp 1–26

    Google Scholar 

  • Subramaniam VK (1952) Control of the fluted scale in peninsular India. Ind J Entomol 16:391–394

    Google Scholar 

  • Sundheim L, Tronsmo A (1988) Hyperparasites in biological control. In: Mukerji KG, Garg KL (eds) Biocontrol of plant diseases, vol 1. CRC Press Boca Raton, USA, pp 53–70

    Google Scholar 

  • Swati S, Adholeya A (2008) Biological control: alternative paradigms for commercialization. In: Maheshwari DK, Dubey RC (eds) Potential microorganisms for sustainable agriculture: a techno-commercial perspective. IK Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  • Sylvar Technologies (2008) Research. http://www.sylvar.ca/content/13636

  • Szewczyk B, Rabalski L, Krol E, Sihler W, Lobo de Souza M (2009) Baculovirus biopesticides – a safe alternative to chemical protection of plants. J Biopesticides 2:209–216

    CAS  Google Scholar 

  • Szewczyk B, Lobo de Souza M, Batista de Castro ML, Moscardi ML, Moscardi F (2011) Baculovirus biopesticides. In: Stoytcheva M (ed) Pesticides – formulations, effects, fate. InTech, doi:10.5772/13219

  • Tewari S, Arora NK (2013) Transactions amongst microorganisms and plant in the composite rhizosphere habitat. In: Arora NK (ed) Plant microbe symbiosis- fundamentals and advances. Springer, India pp 411–449

    Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:192–208

    Google Scholar 

  • Thiem S, Cheng X-H (2009) Baculovirus host-range. Virol Sin 24:436–457

    Google Scholar 

  • Thungrabeab M, Blaeser P, Sengonca C (2006) Effect of temperature and host plant on the efficacy of different entomopathogenic fungi from Thailand against Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysanoptera:Thripidae) in the laboratory. J Plant Dis Protect 113:181–187

    Google Scholar 

  • Tripathi G, Sharma M (2005) Effects of habitats and pesticides on aerobic capacity and survival of soil fauna. Biomed Environ Sci 18:169–175

    PubMed  CAS  Google Scholar 

  • Tschirley FH (1973) Pesticides, relation to environmental quality. JAMA 224:1157–1166

    PubMed  CAS  Google Scholar 

  • Urquhart EJ, Punja ZK (1997) Epiphytic growth and survival of Tilletiopsu pallescens, a potential biological control agent of Sphaerotheca jilznea, on cucumber leaves. Can J Bot 75:892–901

    Google Scholar 

  • USEPA (1998) Reregistration Eligibility Decision (RED), Bacillus thuringiensis, USA

    Google Scholar 

  • USEPA (2008) What are biopesticides? http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm

  • USEPA (2011) Pesticide news story: EPA releases report containing latest estimates of pesticide use in the United States, USA

    Google Scholar 

  • Van Lantern JC (2003) Need for quality control for mass produced biological control. In: Van Lantern JC (ed) Quality control and production of biological control agents theory and testing procedures. CABI International, UK

    Google Scholar 

  • Vargas JM (1999) Biological control: a work in progress. Golf Course Manag 67:1–4

    Google Scholar 

  • Vattanatangum A (1989) Diamondback moth control with Bacillus thuringiensis products in Thailand. Isr J Entomol 23:131–139

    Google Scholar 

  • Wabule MN, Ngaruiya PN, Kimmins FK, Silverside PJ (ed) (2004) Registration for biocontrol agents in Kenya. In: Proceedings of the pest control products board/Kenya agricultural research institute/department for international development crop protection programme workshop. Natural Resources International Limited, Aylesford, UK

    Google Scholar 

  • Warburton H, Ketunuti U, Grzywacz D (2002) A survey of the supply, production and use of microbial pesticides in Thailand, NRI Report 2723. Natural Resources Institute, University of Greenwich, Chatham, p 100

    Google Scholar 

  • Ward MDW, Chung YJ, Haykal-Coates N, Copeland LB (2009) Differential allergy responses to Metarhizium anisopliae fungal component extracts in BALB/c mice. J Immunotoxicol 6(1):62–73

    PubMed  Google Scholar 

  • Ward MWD, Chung YJ, Copeland LB, Doerfler DL (2011) Allergic responses induced by a fungal biopesticide Metarhizium anisopliae and house dust mite are compared in a mouse model. J Toxicol 1–13

    Google Scholar 

  • Warren GF (1998) Spectacular increases in crop yields in the United States in the twentieth century. Weed Technol 12:752–760

    Google Scholar 

  • Warrior P (2000) Living systems as natural crop-protection agents. Pest Manag Sci 56:681–687

    CAS  Google Scholar 

  • Webster JPG, Bowles RG, Williams NT (1999) Estimating the economic benefits of alternative pesticide usage scenarios: wheat production in the United Kingdom. Crop Prot 18:83–89

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Google Scholar 

  • West TW, Campbell GA (1946) DDT, the synthetic insecticide. Chapman & Hall, London

    Google Scholar 

  • Wu C, Chen X (2004) Impact of pesticides on biodiversity in agricultural areas. Ying Yong Sheng Tai Xue Bao 15(2):341–344

    PubMed  CAS  Google Scholar 

  • Xu QF, Song YL, Du CX, Zun SL, Wang WX, Xu BS (1987) An investigation of culturing the fungus pathogen, Beauveria bassiana in maize whorl against corn borer, Ostrinia furnacalis. J Jilin Agric Sci 4:25–27

    Google Scholar 

  • Yang HW (2007) Advances in bio-control of plant diseases and pests in China. Sci Technol Rev 25:56–60

    CAS  Google Scholar 

  • Ye ZC, Chen JF (2002) Biological control, Chinese encyclopedia of academic research: 20th century. Fujian Education Press, pp 328–331

    Google Scholar 

  • Zhang GZ (2002) Research and development of biopesticides in China. J Hubei Agri Coll 22:472–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mishra, J., Tewari, S., Singh, S., Arora, N.K. (2015). Biopesticides: Where We Stand?. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_2

Download citation

Publish with us

Policies and ethics