Skip to main content

Pseudomonads: Plant Growth Promotion and Beyond

  • Chapter
  • First Online:
Plant Microbes Symbiosis: Applied Facets

Abstract

Members of the genus Pseudomonas are a ubiquitous and important component of the soil and rhizospheric ecosystems, where they play multifarious roles such as the recycling of organic matter, promotion of plant growth, alleviation of abiotic stress effects in plants, and degradation of xenobiotic compounds. The versatility and ecological fitness of this genus has been often attributed to its metabolic versatility and its ability to produce antagonistic molecules, thereby gaining a niche advantage in the rhizosphere. This chapter attempts to briefly explore the historical evolution of this genus and explore the various facets of Pseudomonads, which confer upon them a distinct edge over other soil microbes. The utility of Pseudomonads both within and beyond the realm of plant growth promotion, in the agro and related ecosystems, is also discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams PA (1987) Alternative models of character displacement and niche shift 2. Displacement when there is competition for a single resource. Am Nat 130:271–282

    Google Scholar 

  • Ahemad M, Khan MS (2012a) Alleviation of fungicide-induced phytotoxicity in green gram Vigna radiata (L.) Wilczek using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950

    PubMed  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    PubMed  CAS  Google Scholar 

  • Aislabie J, Lloyd-Jones G (1995) A review of bacterial degradation of pesticides. Aust J Soil Res 33:925–942

    CAS  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    CAS  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Rao LV, Venkateswarlu B (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6:239–246

    CAS  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64(2):493–502

    CAS  Google Scholar 

  • Aoki MK, Uehara K, Koseki K, Tsuji M, Iijima K, Ono T, Samejima (1991) An antimicrobial substance produced by Pseudomonas cepacia B5 against the bacterial wilt disease pathogen Pseudomonas solanacearum. Agric Biol Chem 55:715–722

    CAS  Google Scholar 

  • Ayres JC (1960) The relationship of organisms of the genus Pseudomonas to the spoilage of meat, poultry and eggs. J Appl Bacteriol 23:471–486

    Google Scholar 

  • Bano N, Musarrat J (2003) Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance. Lett Appl Microbiol 36:349–353

    PubMed  CAS  Google Scholar 

  • Barbiere P, Bestetti G, Reniero D, Galli E (1996) Mercury resistance in aromatic compound degrading Pseudomonas strains. FEMS Microb Ecol 20:185–194

    Google Scholar 

  • Behki RM, Khan US (1986) Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem 34:746–749

    CAS  Google Scholar 

  • Behrendt U, Ulrich A, Schumann P, Meyer JM, Spröer C (2007) Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57:979–985

    PubMed  CAS  Google Scholar 

  • Behrendt U, Schumann P, Meyer JM, Ulrich A (2009) Pseudomonas cedrina subsp. fulgida subsp. nov., a fluorescent bacterium isolated from the phyllosphere of grasses. Int J Syst Evol Microbiol 59:1331–1335

    PubMed  CAS  Google Scholar 

  • Beijerinck MW (1921) Beobachtungen und Betrachtungen uber Wurzelknospen und Nebenwurzeln. Verz Geschr Beijer 2:7–121

    Google Scholar 

  • Bell G (1997) Selection: the mechanism of evolution. Springer, Berlin

    Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 1–442

    Google Scholar 

  • Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert ecosystems. Curr Sci 1:91–100

    Google Scholar 

  • Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr (VI) from chromate-bearing cooling tower effluent. Biotechnol Lett 18:667

    CAS  Google Scholar 

  • Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root-associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch Microbiol 195:605–615

    PubMed  CAS  Google Scholar 

  • Braud A, Je’ze’quel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    PubMed  Google Scholar 

  • Cámara B, Strömpl C, Verbarg S, Spröer C, Pieper DH, Tindall BJ (2007) Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 57:923–931

    PubMed  Google Scholar 

  • Canstein HV, Li Y, Timmis KN, Deckwer WD, Timmis KN, Deckwer WD, Wagner-Döbler I (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284

    Google Scholar 

  • Chang JS, Hong J (2004) Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnol Bioeng 44:999–1006

    Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R, 3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075

    PubMed  CAS  Google Scholar 

  • Damodaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Sah V, Sharma DK (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

    Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    PubMed  CAS  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Google Scholar 

  • De Leo PC, Ehrlich HL (1994) Reduction of hexavalent chromium by Pseudomonas fluorescens LB 300 in batch and continuous cultures. Appl Microbiol Biotechnol 40:756

    Google Scholar 

  • De Weger LA, Van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonisation of potato roots. J Bacteriol 169:2769–2773

    PubMed  PubMed Central  Google Scholar 

  • De Weger LA, Van Loosdrecht MC, Klaassen HE, Lugtenberg BJJ (1989) Mutational changes in physiochemical cell surface properties of plant-growth-stimulating Pseudomonas spp. do not influence the attachment properties of the cells. J Bacteriol 171:2756–2761

    PubMed  PubMed Central  Google Scholar 

  • Dekkers LC, Bloemendaal CJP, deWeger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998) A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56

    PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria soil. Biol Biochem 40:74–84

    Google Scholar 

  • Dhillon JK, Shivaraman N (1999) Biodegradation of cyanide compounds by a Pseudomonas species (S1). Can J Microbiol 45:201–208

    PubMed  CAS  Google Scholar 

  • Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 9:130–138

    Google Scholar 

  • Dörr J, Hurek T, Reinhold Hurek HB (1998) Type IV pili are involved in plant–microbe and fungus–microbe interactions. Mol Microbiol 30:7–17

    PubMed  Google Scholar 

  • Doudoroff M, Palleroni NJ (1974) Genus I: Pseudomonas Migula 1984, 237 Nom. cons. Opin. 5, Jud. Comm. 1952, 121. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 217–243

    Google Scholar 

  • Favero MS, Carson LA, Bond WW, Petersen NJ (1971) Pseudomonas aeruginosa: growth in distilled water from hospitals. Science 173:836–838

    PubMed  CAS  Google Scholar 

  • Feng Z, Zhang J, Huang X, Zhang J, Chen M, Li S (2012) Pseudomonas zeshuii sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 62:2608–2612

    PubMed  CAS  Google Scholar 

  • Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediat J 5:225–246

    CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. Academic, New York

    Google Scholar 

  • Furuya NY, Kushima K, Tsuchiya K (1991) Protection of tomato by pretreatment with Pseudomonas glumae from infection with Pseudomonas solanacearum and its mechanisms. Ann Phytopathol Soc Jpn 57:363–370

    Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Google Scholar 

  • Goldman RC, Leive L (1980) Heterogeneity in antigenic side chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2. Eur J Biochem 107:145–153

    PubMed  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    PubMed  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    PubMed  CAS  Google Scholar 

  • Gupta SK, Kumari R, Prakash O, Lal R (2008) Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 58:1339–1345

    PubMed  CAS  Google Scholar 

  • Guttman DS, Morgan RL, Wang PW (2008) The evolution of the Pseudomonads. In: Fatmi M, Collmer A, Iacobellis NS, Mansfield JW, Murillo J, Schaad NW, Ullrich M (eds) Pseudomonas syringae pathovars and related pathogens–identification, epidemiology and genomics. Springer, Dordrecht, pp 307–319

    Google Scholar 

  • Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa review. Gene 192:99–108

    PubMed  CAS  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1997

    PubMed  CAS  Google Scholar 

  • Hartman GL, Hong W, Hayward AC (1992) Potential of biological and chemical control of bacterial wilt. In: Hartman GL, Hayward AC (eds) Bacterial wilt. ACIAR, Canberra, pp 322–326

    Google Scholar 

  • Haubold B, Rainey PB (1996) Genetic and ecotypic structure of a fluorescent Pseudomonas population. Mol Ecol 5:747–761

    Google Scholar 

  • Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take all. Phytopathology 77:286–292

    Google Scholar 

  • Hu MZC, Reeves M (1997) Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnol Prog 13:60–70

    CAS  Google Scholar 

  • Hussein H, Moawad H, Farag S (2004) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J Biotechnol 7:13

    Google Scholar 

  • Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L, Bouchier C, Zhukova NV, Russell J, Elena C, Kiprianova A (2009) Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int J Syst Evol Microbiol 59:2476–2481

    PubMed  CAS  Google Scholar 

  • Jagadeesh KS, Kulkarni JH, Krishnaraj PU (2001) Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr Sci 81:882–889

    Google Scholar 

  • Judith EM, De Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, Van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Google Scholar 

  • Kazy SK, Sar P, Sen AK, Singh SP, D’Souza SF (2002) Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 18:583–588

    CAS  Google Scholar 

  • Kazy SK, Das SK, Sar P (2006) Lanthanum biosorption by a Pseudomonas sp: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol 33:773–783

    PubMed  CAS  Google Scholar 

  • Kazy SK, Sar P, D’Souza SF (2008) Studies on uranium removal by the extra cellular polysaccharide of a Pseudomonas aeruginosa strain. Bioremediat J 12:47–57

    CAS  Google Scholar 

  • Khan NH, Ishii Y, Kimata-Kino N, Esaki H, Nishino T, Nishimura M, Kogure K (2007) Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb Ecol 53:173–186

    PubMed  CAS  Google Scholar 

  • Kiewitz C, Tummler B (2000) Sequence diversity of Pseudomonas aeruginosa impact on population structure and genome evolution. J Bacteriol 182:3125–3135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kloepper JW (1983) Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and daughter tubers. Phytopathology 73:217–219

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldàn A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 14:1096–1104

    PubMed  CAS  Google Scholar 

  • Kuntz DA, Nagappan O, Avalos JS, Delong GT (1992) Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 58:2022–2029

    Google Scholar 

  • Lakshmi CV, Prakash NT (2009) In situ bioremediation of chlorpyrifos in cotton fields: possible role of plant-microbe interaction. J Pure Appl Microbiol 3:543–550

    CAS  Google Scholar 

  • Lakshmi Rani N, Lalitha Kumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 40:1000–1006

    Google Scholar 

  • Lawongsa P, Boonkerd N, Wongkaew S, O’Gara F, Teaumroong N (2008) Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World J Microb Biotechnol 24:1877–1884

    Google Scholar 

  • Lessie TG, Phibbs PVJ (1984) Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38:359–388

    PubMed  CAS  Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria on asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394

    PubMed  CAS  Google Scholar 

  • Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Young CC (2013) Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. Int J Syst Evol Microbiol 63:3168–3174

    PubMed  CAS  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV, Davis EWII, Lim CK (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. doi:10.1371/journal.pgen.1002784

    PubMed  CAS  PubMed Central  Google Scholar 

  • López JR, Diéguez AL, Doce A, De la Roca E, De la Herran R, Navas JI, Romalde JL (2012) Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int J Syst Evol Microbiol 62:874–882

    PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    PubMed  CAS  Google Scholar 

  • Madhuri RJ, Rangaswamy V (2009) Biodegradation of selected insecticides by Bacillus and Pseudomonas sps in ground nut fields. Toxicol Int 16:127–132

    Google Scholar 

  • Matthysse AG, McMahan S (1998) Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 64:2341–2345

    PubMed  CAS  PubMed Central  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni N (2002) Siderophore typing, a powerful tool for the identification of fluorescent and non-fluorescent Pseudomonas. Appl Environ Microbiol 68:2745–2753

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meyer AF, Lipson DA, Martin AP, Schadt CW, Schmidt SK (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70:483–489

    PubMed  CAS  PubMed Central  Google Scholar 

  • Migula W (1894) U¨ber ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Kundu S, Bisht JK, Gupta HS (2008) Characterization of a psychrotrophic plant growth promoting Pseudomonas PGERS 17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:1–8

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    PubMed  CAS  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Bisht JK, Bhatt JC (2011) Alleviation of cold stress effects in wheat (Triticum aestivum L.) seedlings by application of psychrotolerant pseudomonads from N.W. Himalayas. Arch Microbiol 193:497–513

    PubMed  CAS  Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Bisht JK, Gupta HS (2012) Co-inoculation of Rhizobium leguminosarum PR-1 with a cold tolerant Pseudomonas sp improves iron acquisition, nutrient uptake and growth of field pea. J Plant Nutr 35:243–256

    CAS  Google Scholar 

  • Mistry K, Desai C, Patel K (2009) Reduction of chromium (VI) by bacterial strain KK15 isolated from contaminated soil. J Cell Tissue Res 9:1821

    CAS  Google Scholar 

  • Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530

    PubMed  CAS  Google Scholar 

  • Nagashetti V, Mahadevaraju GK, Muralidhar TS, Javed A, Trivedi D, Bhusa KP (2013) Biosorption of heavy metals from soil by Pseudomonas aeruginosa. Int J Innov Technol Explor Eng 2:22–24

    Google Scholar 

  • Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ−HCH degradation by Pseudomonas strains. Bioresour Technol 88:41–46

    PubMed  CAS  Google Scholar 

  • O’brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627

    Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–344

    PubMed  CAS  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hyper mutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253

    PubMed  CAS  Google Scholar 

  • Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2, 4, 6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750

    PubMed  CAS  PubMed Central  Google Scholar 

  • Palleroni NJ (1984) Pseudomonas, Topley and Wilson’s microbiology and microbial infections. Hodder Arnold, London

    Google Scholar 

  • Palleroni NJ (2005) Genus I. Pseudomonas Migula. In: Brenner DJ, Krieg NR, Staley JT, Garitty GT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 323–379, 2(2)

    Google Scholar 

  • Palleroni NJ (2008) The road to the taxonomy of Pseudomonas. In: Pseudomonas: genomics and molecular biology. Caister Academic Press, Norfolk, pp 1–18

    Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    CAS  Google Scholar 

  • Palumbo J, Kado C, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    PubMed  CAS  PubMed Central  Google Scholar 

  • Panicker G, Aislabie J, Saul D, Bej A (2002) Cold tolerance of Pseudomonas sp. 30/3 isolated from oil-contaminated soil. Antarct Polar Biol 225:5–11

    Google Scholar 

  • Park YD, Yi H, Baik KS, Seong CN, Bae KS, Moon EY, Chun J (2006) Pseudomonas segetis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2593–2595

    PubMed  CAS  Google Scholar 

  • Paul D, Dinesh Kumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374

    CAS  Google Scholar 

  • Phillips DA, Streit W (1995) Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization. In: Stacey G, Keen NT (eds) Plant-microbe interactions. Chapman & Hall, New York, pp 236–271

    Google Scholar 

  • Piotrowska-Seget Z, Cycon M, Kozdrój J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246

    Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    PubMed  CAS  Google Scholar 

  • Poornima K, Karthik L, Swadhini SP, Mythili S, Sathiavelu A (2010) Degradation of chromium by using a novel strains of Pseudomonas species. J Microb Biochem Technol 2:95–99

    CAS  Google Scholar 

  • Praveen Kumar G, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol. doi:10.1155/2014/1959465946

    Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth‐promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    PubMed  CAS  Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    PubMed  CAS  Google Scholar 

  • Rainey PB, Buckling A, Kassen R, Travisano M (2000) The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol 15:243–247

    PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    PubMed  CAS  Google Scholar 

  • Ramos E, Ramírez-Bahena MH, Valverde A, Velázquez E, Zúñiga D, Velezmoro C, Peix A (2013) Pseudomonas punonensis sp. nov., isolated from straw. Int J Syst Evol Microbiol 63:1834–1839

    PubMed  CAS  Google Scholar 

  • Ramphal R, Small PM, Shands JW Jr, Fischlschweiger W, Small PA Jr (1980) Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect Immun 27:614–619

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK (2013) Analysis of proteins expressed by an abiotic stress tolerant Pseudomonas putida (NBAII-RPF9) isolate under saline and high temperature conditions. Curr Microbiol 67:659–667

    PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Raman SB, Kertulis G, Ma L (2006) Arsenic resistant proteobacterium from the phyllosphere of arsenic hyper accumulating fern (Pteris vittata (L.) reduces arsenate to arsenite. Can J Microbiol 52:695–700

    PubMed  CAS  Google Scholar 

  • Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    PubMed  CAS  Google Scholar 

  • Rokade KB, Mali GV (2013) Optimization of soil parameters for benzyl benzoate degradation by Pseudomonas desmolyticum NCIM 2112. Res J Agric Sci 1(5):1–9

    Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    CAS  Google Scholar 

  • Sandhya V, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    PubMed  CAS  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar BN, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Google Scholar 

  • Sarkar S, Sathesh Kumar A, Jayanthi R, Premkumar R (2011) Biodegradation of Fenpropathrin by Pseudomonas sp. isolated from tea rhizosphere microflora. Adv Biotechnol 10:6–9

    Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009a) Mountain aspect influences the genetic glustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2009b) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362

    CAS  Google Scholar 

  • Sesma A, Sundin GW, Murillo J (2000) Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Microbiology 146:2375–2384

    PubMed  CAS  Google Scholar 

  • Shakya S, Pradhan B, Smith L, Tuladhar S, Shrestha J (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surface water and groundwater of Rautahat District, Nepal. J Environ Manag 95:S250–S255

    CAS  Google Scholar 

  • Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SVS (2011) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in central India. J Microbiol Biotechnol 21:1127–1142

    PubMed  CAS  Google Scholar 

  • Silby MW, Cerden˜o-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    PubMed  PubMed Central  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    PubMed  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions – a review. Gene 179:9–19

    PubMed  CAS  Google Scholar 

  • Simons M, Van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonisation by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    PubMed  CAS  Google Scholar 

  • Simons M, Permentier HP, De Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 10:102–106

    CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    PubMed  CAS  Google Scholar 

  • Siva GV, Rajam A (2013) Degradation of endosulfan using Pseudomonas sp. ED1 isolated from pesticide contaminated soil. J Acad India Res 2:170

    CAS  Google Scholar 

  • Spiers AJ, Buckling A, Rainey P (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350

    PubMed  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic Pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    PubMed  CAS  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338

    PubMed  CAS  Google Scholar 

  • Tamer MAT, Medhat AH, Naggar EL (2013) Malathion degradation by soil isolated bacteria and detection of degradation products by GC-MS. Int J Environ Sci 3:1467–1476

    Google Scholar 

  • Tao Y, Zhou Y, He X, Hu X, Li D (2014) Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int J Syst Evol Microbiol 64:95–100

    PubMed  CAS  Google Scholar 

  • Thomas CM (2000) The horizontal gene pool. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Toro M, Ramírez-Bahena MH, Cuesta MJ, Velázquez E, Peix A (2013) Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 63:4413–4420

    PubMed  CAS  Google Scholar 

  • Tourkya B, Boubellouta T, Dufour E, Leriche F (2009) Fluorescence spectroscopy as a promising tool for a polyphasic approach to Pseudomonad taxonomy. Curr Microbiol 58:39–46

    PubMed  CAS  Google Scholar 

  • Tvrzová L, Schumann P, Spröer C, Sedláček I, Páčová Z, Šedo O, Zdráhal Z, Steffen M, Lang E (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 56:2657–2663

    PubMed  Google Scholar 

  • Unnamalai N, Gnanamanickam SS (1984) Pseudomonas fluorescens is an antagonist to Xanthomonas citri (Hasse) dye, the incitant of citrus canker. Curr Sci 53:703–704

    Google Scholar 

  • Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001) Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica 29:155–166

    Google Scholar 

  • Wang LT, Tai CJ, Wu YC, Chen YB, Lee FL, Wang SL (2010) Pseudomonas taiwanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:2094–2098

    PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    CAS  Google Scholar 

  • Whitby JL, Rampling A (1972) Pseudomonas aeruginosa contamination in domestic and hospital environment. Lancet 1:15–17

    PubMed  CAS  Google Scholar 

  • Wilson M, Lindow SE (1993) Effect of phenotypic plasticity on epiphytic survival and colonization by Pseudomonas syringae. Appl Environ Microbiol 59:410–416

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winogradsky S (1949) Microbiologie du Sol. Problèmes et Méthodes: Cinquante Ans de Recherches. Masson et Cie, Paris, p 863

    Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326

    PubMed  CAS  Google Scholar 

  • Xie F, Ma H, Quan S, Liu D, Chen G, Chao Y, Qian S (2014) Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine. Int J Syst Evol Microbiol 64:559–564

    PubMed  CAS  Google Scholar 

  • Xu GW, Gross DC (1986) Field evaluations of the interactions among fluorescent pseudomonads, Erwinia carotovora and potato yields. Phytopathology 76:423–430

    Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

    CAS  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394

    PubMed  CAS  Google Scholar 

  • Yao K, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    CAS  Google Scholar 

  • Zhang DC, Hong CL, Zhou YG, Schinner F, Margesin R (2011) Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2333–2337

    PubMed  CAS  Google Scholar 

  • Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394

    PubMed  CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris BN (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Selvakumar, G., Panneerselvam, P., Bindu, G.H., Ganeshamurthy, A.N. (2015). Pseudomonads: Plant Growth Promotion and Beyond. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_10

Download citation

Publish with us

Policies and ethics