Skip to main content

Oxidative Stress-Induced Lipid Peroxidation: Role in Inflammation

  • Chapter
  • First Online:
Book cover Free Radicals in Human Health and Disease

Abstract

Oxidative stress-induced lipid peroxidation is known to produce mediators that are implicated in the pathophysiology of a wide range of inflammatory diseases. In many inflammatory diseases, various lipid-derived aldehydes (LDAs) including 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde (MDA) have been identified. The reactive oxygen species (ROS), generated by various oxidants, attack the membrane lipids resulting into lipid peroxidation which forms a number of potentially toxic lipid aldehydes. The lipid aldehydes activate upstream signaling kinases and subsequently alter the redox signaling pathway resulting in cytotoxicity such as excessive cell proliferation or cell death. Further, LDAs also cause posttranslational modification of various other cellular proteins and genetic material, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), leading to cytotoxicity and genotoxicity. HNE, one of the highly reactive lipid aldehyde, directly as well as indirectly in the form of glutathione conjugate, has been implicated in the activation of protein kinase cascades leading to the activation of redox-sensitive transcription factors such as NF-κB and AP-1. The activated transcription factors translocate to the nucleus and transcribe several inflammatory marker genes including cytokines, chemokines, and various cellular proteins involved in cell survival, cell differentiation, and cell death eventually resulting in the pathogenesis of various diseases. Thus, a clear understanding of oxidative stress-generated LDA-induced alteration in cellular physiology would provide opportunities to prevent or ameliorate a number of inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh SP, Niemczyk M, Saini D et al (2008) Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry 47(12):3900–3911

    Article  CAS  PubMed  Google Scholar 

  2. Pillon NJ, Croze ML, Vella RE et al (2012) The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology 153(5):2099–2111

    Article  CAS  PubMed  Google Scholar 

  3. Mattson MP (2009) Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 44(10):625–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 1801(8):924–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48(12):1570–1576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kang SC, Kim HW, Kim KB et al (2011) Hepatotoxicity and nephrotoxicity produced by 4-hydroxy-2-nonenal (4-HNE) following 4-week oral administration to Sprague-Dawley rats. J Toxicol Environ Health A 74(12):779–789

    Article  CAS  PubMed  Google Scholar 

  7. Karihtala P, Kauppila S, Puistola U et al (2011) Divergent behaviour of oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (HNE) in breast carcinogenesis. Histopathology 58(6):854–862

    Article  PubMed  Google Scholar 

  8. Uno K, Kato K, Kusaka G et al (2011) The balance between 4-hydroxynonenal and intrinsic glutathione/glutathione S-transferase A4 system may be critical for the epidermal growth factor receptor phosphorylation of human esophageal squamous cell carcinomas. Mol Carcinog 50(10):781–790

    Article  CAS  PubMed  Google Scholar 

  9. Moretto N, Volpi G, Pastore F (2012) Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann NY Acad Sci 1259:39–46

    Article  CAS  PubMed  Google Scholar 

  10. Vatsyayan R, Chaudhary P, Sharma A et al (2011) Role of 4-hydroxynonenal in epidermal growth factor receptor-mediated signaling in retinal pigment epithelial cells. Exp Eye Res 92(2):147–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lee SE, Park YS (2013) Role of lipid peroxidation-derived α, β-unsaturated aldehydes in vascular dysfunction. Oxid Med Cell Longev 2013:1–7

    Google Scholar 

  12. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  13. Loidl-Stahlhofen A, Hannemann K, Spiteller G (1994) Generation of alpha-hydroxyaldehydic compounds in the course of lipid peroxidation. Biochim Biophys Acta 1213:140–148

    Article  CAS  PubMed  Google Scholar 

  14. LoPachin RM, Gavin T, Petersen DR et al (2009) Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 22(9):1499–1508

    Article  CAS  PubMed  Google Scholar 

  15. Juric-Sekhar G, Zarkovic K, Waeg G et al (2009) Distribution of 4-hydroxynonenal-protein conjugates as a marker of lipid peroxidation and parameter of malignancy in astrocytic and ependymal tumors of the brain. Tumori 95(6):762–768

    PubMed  Google Scholar 

  16. Vindis C, Escargueil-Blanc I, Uchida K et al (2007) Lipid oxidation products and oxidized low-density lipoproteins impair platelet-derived growth factor receptor activity in smooth muscle cells: implication in atherosclerosis. Redox Rep 12(1):96–100

    Article  CAS  PubMed  Google Scholar 

  17. Lee WC, Wong HY, Chai YY et al (2012) Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 425(4):842–847

    Article  CAS  PubMed  Google Scholar 

  18. Bradley MA, Xiong-Fister S, Markesbery WR et al (2012) Elevated 4-hydroxyhexenal in Alzheimer’s disease (AD) progression. Neurobiol Aging 33(6):1034–1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Begenik H, Soyoral YU, Erkoc R et al (2013) Serum malondialdehyde levels, myeloperoxidase and catalase activities in patients with nephrotic syndrome. Redox Rep 18(3):107–112

    Article  CAS  PubMed  Google Scholar 

  20. Devasagayam TP, Tilak JC, Boloor KK et al (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  PubMed  Google Scholar 

  21. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bacsi A, Choudhury BK, Dharajiya N et al (2006) Subpollen particles: carriers of allergenic proteins and oxidases. J Allergy Clin Immunol 118(4):844–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Minakami R, Sumimotoa H (2006) Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int J Hematol 84(3):193–198

    Article  CAS  PubMed  Google Scholar 

  24. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11(10):2409–24027

    Article  CAS  PubMed  Google Scholar 

  25. Capdevila J, Parkhill L, Chacos N et al (1981) The oxidative metabolism of arachidonic acid by purified cytochromes P-450. Biochem Biophys Res Commun 101:1357–1363

    Article  CAS  PubMed  Google Scholar 

  26. Puntarulo S, Cederbaum AI (1996) Role of cytochrome P-450 in the stimulation of microsomal production of reactive oxygen species by ferritin. Biochim Biophys Acta 1289(2):238–246

    Article  PubMed  Google Scholar 

  27. Tolbert NE, Essner E (1981) Microbodies: peroxisomes and glyoxysomes. J Cell Biol 91:271–283

    Article  CAS  PubMed Central  Google Scholar 

  28. Vuillaume M (1987) Reduced oxygen species, mutation, induction and cancer initiation. Mutat Res 186(1):43–72

    Article  CAS  PubMed  Google Scholar 

  29. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    Article  CAS  PubMed  Google Scholar 

  30. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bartsch H, Nair J (2004) Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect Prev 28(6):385–391

    Article  CAS  PubMed  Google Scholar 

  32. Catalá A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38(9):1482–1495

    Article  PubMed  Google Scholar 

  33. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543

    Article  CAS  PubMed  Google Scholar 

  34. Nigam S, Schewe T (2000) Phospholipase A(2)s and lipid peroxidation. Biochim Biophys Acta 1488(1–2):167–181

    Article  CAS  PubMed  Google Scholar 

  35. Parola M, Bellomo G, Robino G et al (1999) 4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. Antioxid Redox Signal 1(3):255–284

    Article  CAS  PubMed  Google Scholar 

  36. Rubbo H, Parthasarathy S, Barnes S et al (1995) Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys 324(1):15–25

    Article  CAS  PubMed  Google Scholar 

  37. Jongberg S, Carlsen CU, Skibsted LH (2009) Peptides as antioxidants and carbonyl quenchers in biological model systems. Free Radic Res 43(10):932–942

    Article  CAS  PubMed  Google Scholar 

  38. Soberman RJ (2003) The expanding network of redox signaling: new observations, complexities, and perspectives. J Clin Invest 111(5):571–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028

    CAS  PubMed  Google Scholar 

  40. Wall SB, Oh JY, Diers AR et al (2012) Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol 3:369

    Article  PubMed Central  PubMed  Google Scholar 

  41. Pantano C, Reynaert NL, van der Vliet A et al (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8(9–10):1791–1806

    Article  CAS  PubMed  Google Scholar 

  42. Srivastava SK, Ramana KV (2009) Focus on molecules: nuclear factor-kappa B. Exp Eye Res 88(1):2–3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Grossmann M, Nakamura Y, Grumont R et al (1999) New insights into the roles of ReL/NF-kappa B transcription factors in immune function, hemopoiesis and human disease. Int J Biochem Cell Biol 31(10):1209–1219

    Article  CAS  PubMed  Google Scholar 

  44. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87(1):13–20

    Article  CAS  PubMed  Google Scholar 

  45. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071

    Article  CAS  PubMed  Google Scholar 

  46. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  47. Poli G, Biasi F, Chiarpotto E et al (1989) Lipid peroxidation in human diseases: evidence of red cell oxidative stress after circulatory shock. Free Radic Biol Med 6(2):167–170

    Article  CAS  PubMed  Google Scholar 

  48. Higdon A, Diers AR, Oh JY et al (2012) Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442(3):453–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Levonen AL, Landar A et al (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378(Pt 2):373–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ceaser EK, Moellering DR et al (2004) Mechanisms of signal transduction mediated by oxidized lipids: the role of the electrophile-responsive proteome. Biochem Soc Trans 32(Pt 1):151–155

    Article  CAS  PubMed  Google Scholar 

  51. Zmijewski JW, Landar A, Watanabe N et al (2005) Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 33(Pt 6):1385–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Dickinson DA, Darley-Usmar VM, Landar A (2006) The covalent advantage: a new paradigm for cell signaling by thiol reactive lipid oxidation products. In: Dalle-Donne I, Scalone A, Butterfield DA (eds) Redox proteomics: from protein modifications to cellular dysfunction and diseases. Wiley, Indianapolis, pp 345–367

    Google Scholar 

  53. Doorn JA, Petersen DR (2002) Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chem Res Toxicol 15(11):1445–1450

    Article  CAS  PubMed  Google Scholar 

  54. Isom AL, Barnes S, Wilson L et al (2004) Modification of cytochrome c by 4-hydroxy- 2-nonenal: evidence for histidine, lysine, and arginine-aldehyde adducts. J Am Soc Mass Spectrom 15(8):1136–1147

    Article  CAS  PubMed  Google Scholar 

  55. Chaudhary P, Sharma R, Sharma A et al (2010) Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling. Biochemistry 49(29):6263–6275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Dwivedi S, Sharma A, Patrick B et al (2007) Role of 4-hydroxynonenal and its metabolites in signaling. Redox Rep 12(1):4–10

    Article  PubMed  Google Scholar 

  57. Biasi F, Vizio B, Mascia C et al (2006) c-Jun N-terminal kinase upregulation as a key event in the proapoptotic interaction between transforming growth factor-beta1 and 4-hydroxynonenal in colon mucosa. Free Radic Biol Med 41(3):443–454

    Article  CAS  PubMed  Google Scholar 

  58. Ramana KV, Bhatnagar A, Srivastava S et al (2006) Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J Biol Chem 281(26):17652–17660

    Article  CAS  PubMed  Google Scholar 

  59. Ramana KV, Fadl AA, Tammali R et al (2006) Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J Biol Chem 281(44):33019–33029

    Article  CAS  PubMed  Google Scholar 

  60. Leonarduzzi G, Robbesyn F, Poli G (2004) Signaling kinases modulated by 4-hydroxynonenal. Free Radic Biol Med 37(11):1694–1702

    Article  CAS  PubMed  Google Scholar 

  61. Segovia J, Sabbah A et al (2012) TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS ONE 7(1), e29695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Auerbach A, Hernandez ML (2012) The effect of environmental oxidative stress on airway inflammation. Curr Opin Allergy Clin Immunol 12(2):133–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Profumo E, Buttari B, Riganò R (2011) Oxidative stress in cardiovascular inflammation: its involvement in autoimmune responses. Int J Inflamm 2011:295705

    Article  Google Scholar 

  64. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Srivastava SK, Yadav UC et al (2011) Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 191(1–3):330–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhang H, Forman HJ (2008) Acrolein induces heme oxygenase-1 through PKC-delta and PI3K in human bronchial epithelial cells. Am J Respir Cell Mol Biol 38(4):483–490

    Article  PubMed  Google Scholar 

  67. Tanel A, Averill-Bates DA (2007) P38 and ERK mitogen-activated protein kinases mediate acrolein-induced apoptosis in Chinese hamster ovary cells. Cell Signal 19(5):968–977

    Article  CAS  PubMed  Google Scholar 

  68. Zhang H, Forman HJ (2009) Signaling pathways involved in phase II gene induction by alpha, beta-unsaturated aldehydes. Toxicol Ind Health 25(4–5):269–278

    Article  PubMed Central  PubMed  Google Scholar 

  69. Fu YQ, Fang F, Lu ZY et al (2010) N-acetylcysteine protects alveolar epithelial cells from hydrogen peroxide-induced apoptosis through scavenging reactive oxygen species and suppressing c-Jun N-terminal kinase. Exp Lung Res 36(6):352–361

    Article  CAS  PubMed  Google Scholar 

  70. Umar S, Zargan J, Umar K et al (2012) Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact 197(1):40–46

    Article  CAS  PubMed  Google Scholar 

  71. Müller JM, Rupec RA, Baeuerle PA (1997) Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods 11(3):301–312

    Article  PubMed  Google Scholar 

  72. Meyer M, Pahl HL, Baeuerle PA (1994) Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact 91(2–3):91–100

    Article  CAS  PubMed  Google Scholar 

  73. Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391(5):499–510

    Article  PubMed  Google Scholar 

  74. Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345

    Article  PubMed  Google Scholar 

  75. Cerutti P, Ghosh R, Oya Y et al (1994) The role of the cellular antioxidant defense in oxidant carcinogenesis. Environ Health Perspect 102:123–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Limón-Pacheco JH, Gonsebatt ME (2010) The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent Nerv Syst Agents Med Chem 10(4):287–297

    Article  PubMed  Google Scholar 

  77. Ballatori N, Krance SM, Notenboom S et al (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390(3):191–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Ozkanlar S, Akcay F (2012) Antioxidant vitamins in atherosclerosis – animal experiments and clinical studies. Adv Clin Exp Med 21(1):115–123

    PubMed  Google Scholar 

  79. Hopkins MH, Fedirko V, Jones DP et al (2010) Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiol Biomarkers Prev 19(3):850–858

    Article  CAS  PubMed  Google Scholar 

  80. Mazloom Z, Hejazi N, Dabbaghmanesh MH et al (2011) Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabetic patients. Pak J Biol Sci 14(19):900–904

    Article  CAS  PubMed  Google Scholar 

  81. Goodman M, Bostick RM, Kucuk O et al (2011) Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 51(5):1068–1084

    Article  CAS  PubMed  Google Scholar 

  82. Ienco EC, LoGerfo A, Carlesi C et al (2011) Oxidative stress treatment for clinical trials in neurodegenerative diseases. J Alzheimers Dis 24:111–126

    CAS  PubMed  Google Scholar 

  83. Greenberg ER, Baron JA et al (1994) A clinical trial of antioxidant vitamins to prevent colorectal adenoma. Polyp Prevention Study Group. N Engl J Med 331(3):141–147

    Article  CAS  PubMed  Google Scholar 

  84. Mathew MC, Ervin AM, Tao J et al (2012) Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst Rev 6, CD004567

    PubMed  Google Scholar 

  85. Yadav UC, Kalariya NM, Ramana KV (2011) Emerging role of antioxidants in the protection of uveitis complications. Curr Med Chem 18(6):931–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Steinhubl SR (2008) Why have antioxidants failed in clinical trials? Am J Cardiol 101(10A):14D–19D

    Article  CAS  PubMed  Google Scholar 

  87. Cochemé HM, Murphy MP (2010) Can antioxidants be effective therapeutics? Curr Opin Investig Drugs 11(4):426–431

    PubMed  Google Scholar 

Download references

Acknowledgment

Dr. Umesh C. S. Yadav acknowledges the award of Ramanujan Fellowship and financial support from Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Chand Singh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Yadav, U.C.S. (2015). Oxidative Stress-Induced Lipid Peroxidation: Role in Inflammation. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_9

Download citation

Publish with us

Policies and ethics