Skip to main content

Antioxidative Peptides Derived from Food Proteins

  • Chapter
  • First Online:

Abstract

The search for natural antioxidants is an ongoing endeavour as an aid to combat the harmful effects of free radicals. Research advances in the past few decades have shown that, by controlled enzymatic hydrolysis, natural antioxidants can be produced from food proteins. In this chapter, the role of certain antioxidative peptides derived from food proteins is discussed in relation to their prospect in the prevention of oxidative stress. The molecular diversity of these food peptides is described together with their pharmacological effects and mechanisms of action in relation to antioxidation. The production of these peptides and the elucidation of their antioxidative peptides are also presented. Owing to their therapeutic potential, antioxidative peptides derived from food proteins can be incorporated as ingredients in functional foods, nutraceuticals and pharmaceuticals, where their biological activities may inhibit product oxidation or assist in the control and prevention of diseases induced by free radicals. However, further insightful research is needed to overcome certain scientific challenges and thereby increase and promote consumer acceptance of these natural antioxidants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devasagayam TP, Tilak JC, Boloor KK et al (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  PubMed  Google Scholar 

  2. Stajic M, Vukojevic J, Knezevic A et al (2013) Antioxidant protective effects of mushroom metabolites. Curr Top Med Chem 13:2660–2676

    Article  CAS  PubMed  Google Scholar 

  3. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    Article  CAS  PubMed  Google Scholar 

  4. Ramalingam M, Kim S-J (2012) Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm 119:891–910

    Article  CAS  PubMed  Google Scholar 

  5. Patel VP, Chu CT (2011) Nuclear transport, oxidative stress, and neurodegeneration. Int J Clin Exp 4:215–229

    CAS  Google Scholar 

  6. Ferreira IC, Barros L, Abreu RM (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560

    Article  CAS  PubMed  Google Scholar 

  7. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Papas AM (1999) Diet and antioxidant status. Food Chem Toxicol 37:999–1007

    Article  CAS  PubMed  Google Scholar 

  9. Hirose M, Takesada Y, Tanaka H et al (1998) Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis 19:207–212

    Article  CAS  PubMed  Google Scholar 

  10. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  11. Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1:177–187

    Article  CAS  Google Scholar 

  12. Gibbs B (2004) Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37:123–131

    Article  CAS  Google Scholar 

  13. Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18:163–169

    Article  CAS  PubMed  Google Scholar 

  14. Yang R, Zhang Z, Pei X et al (2009) Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chem 113:464–470

    Article  CAS  Google Scholar 

  15. Möller NP, Scholz-Ahrens KE, Roos N et al (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47:171–182

    Article  PubMed  Google Scholar 

  16. Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29:272–277

    Article  CAS  PubMed  Google Scholar 

  17. Danquah MK, Agyei D (2012) Pharmaceutical applications of bioactive peptides. OA Biotechnol 1(2):5

    Article  Google Scholar 

  18. Agyei D, Danquah MK (2012) Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci Technol 23:62–69

    Article  CAS  Google Scholar 

  19. Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48:430–441

    Article  CAS  PubMed  Google Scholar 

  20. Samaranayaka AGP, Li-Chan ECY (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods 3:229–254

    Article  CAS  Google Scholar 

  21. Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215S–217S

    CAS  PubMed  Google Scholar 

  22. Park SY, Lee J-S, Baek H-H et al (2010) Purification and characterization of antioxidant peptides from soy protein hydrolysate. J Food Biochem 34:120–132

    Article  Google Scholar 

  23. Tang X, He Z, Dai Y et al (2009) Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 58:587–593

    Article  Google Scholar 

  24. Zhang J, Zhang H, Wang L et al (2010) Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem 119:226–234

    Article  CAS  Google Scholar 

  25. Saiga A, Tanabe S, Nishimura T (2003) Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem 51:3661–3667

    Article  CAS  PubMed  Google Scholar 

  26. Manso M, Miguel M, Even J et al (2008) Effect of the long-term intake of an egg white hydrolysate on the oxidative status and blood lipid profile of spontaneously hypertensive rats. Food Chem 109:361–367

    Article  CAS  Google Scholar 

  27. Peng X, Kong B, Xia X et al (2010) Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. Int Dairy J 20:360–365

    Article  CAS  Google Scholar 

  28. Mao X-Y, Cheng X, Wang X et al (2011) Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 126:484–490

    Article  CAS  Google Scholar 

  29. Jung W-K, Rajapakse N, Kim S-K (2005) Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Eur Food Res Technol 220:535–539

    Article  CAS  Google Scholar 

  30. Sampath Kumar NS, Nazeer RA, Jaiganesh R (2012) Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Megalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 42:1641–1649

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, He H, Xie BJ (2004) Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J Agric Food Chem 52:6646–6652

    Article  CAS  PubMed  Google Scholar 

  32. Ko S-C, Kim D, Jeon Y-J (2012) Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem Toxicol 50:2294–2302

    Article  CAS  PubMed  Google Scholar 

  33. Ryu B, Kang K-H, Ngo D-H et al (2012) Statistical optimization of microalgae Pavlova lutheri cultivation conditions and its fermentation conditions by yeast, Candida rugopelliculosa. Bioresour Technol 107:307–313

    Article  CAS  PubMed  Google Scholar 

  34. Sheih IC, Fang TJ, Wu T-K et al (2009) Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J Agric Food Chem 58:1202–1207

    Article  Google Scholar 

  35. Mu MZT-H, Sun M-J (2012) Sweet potato protein hydrolysates: antioxidant activity and protective effects on oxidative DNA damage. Int J Food Sci Technol 47:2304–2310

    Article  Google Scholar 

  36. Huang W-Y, Davidge ST, Wu J (2012) Bioactive natural constituents from food sources – potential use in hypertension prevention and treatment. Crit Rev Food Sci Nutr 53:615–630

    Article  Google Scholar 

  37. Saavedra L, Hebert EM, Minahk C et al (2013) An overview of “omic” analytical methods applied in bioactive peptide studies. Food Res Int 54:925–934

    Article  CAS  Google Scholar 

  38. Roblet C, Amiot J, Lavigne C et al (2012) Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Res Int 46:237–249

    Article  CAS  Google Scholar 

  39. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Tian Q, Li L et al (2013) Inhibitory effect of antioxidant peptides derived from Pinctada fucata protein on ultraviolet-induced photoaging in mice. J Funct Food 5:527–538

    Article  Google Scholar 

  41. Chalamaiah M, Kumar BD, Hemalatha R et al (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135:3020–3038

    Article  CAS  PubMed  Google Scholar 

  42. Ngo DH, Ryu B, Kim SK (2014) Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chem 143:246–255

    Article  CAS  PubMed  Google Scholar 

  43. Klompong V, Benjakul S, Kantachote D et al (2007) Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102:1317–1327

    Article  CAS  Google Scholar 

  44. Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  PubMed  Google Scholar 

  45. Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136:227S–231S

    CAS  PubMed  Google Scholar 

  46. Korhonen HJ, Marnila P (2013) In: Park YW, Haenlein FW (eds) Milk bioactive proteins and peptides. Wiley, West Sussex, pp 148–171

    Google Scholar 

  47. Peña-Ramos EA, Xiong YL, Arteaga GE (2004) Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. J Agric Food Chem 84:1908–1918

    Article  Google Scholar 

  48. Hernández-Ledesma B, Miralles B, Amigo L et al (2005) Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J Agric Food Chem 85:1041–1048

    Article  Google Scholar 

  49. Smithers GW (2008) Whey and whey proteins-‘from gutter-to-gold’. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  50. Kovač DJ, Simeunović JB, Babić OB et al (2013) Algae in food and feed. Food Feed Res 20:21–32

    Google Scholar 

  51. Deng R, Chow T-J (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28:e33–e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Guan XY, Zhang WJ, Zhang XW et al (2009) A potent anti-oxidant property: fluorescent recombinant α-phycocyanin of Spirulina. J Appl Microbiol 106:1093–1100

    Article  CAS  PubMed  Google Scholar 

  53. Sheih IC, Wu T-K, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol 100:3419–3425

    Article  CAS  PubMed  Google Scholar 

  54. Wu H-C, Chen H-M, Shiau C-Y (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int 36:949–957

    Article  CAS  Google Scholar 

  55. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  56. Je J-Y, Park P-J, Kim S-K (2005) Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res Int 38:45–50

    Article  CAS  Google Scholar 

  57. Freitas AC, Andrade JC, Silva FM et al (2013) Antioxidative peptides: trends and perspectives for future research. Curr Med Chem 20:4575–4594

    Article  CAS  PubMed  Google Scholar 

  58. Gauthier SF, Pouliot Y, Saint-Sauveur D (2006) Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 16:1315–1323

    Article  CAS  Google Scholar 

  59. Agyei D, Potumarthi R, Danquah MK (2013) In: Kim S-K (ed) Production of Lactobacilli proteinases for the manufacture of bioactive peptides: part I – upstream processes. Wiley, Sussex, pp 207–229

    Google Scholar 

  60. Agyei D, Potumarthi R, Danquah MK (2013) In: Kim S-K (ed) Production of Lactobacilli proteinases for the manufacture of bioactive peptides: part II – downstream processes. Wiley, Sussex, pp 231–251

    Google Scholar 

  61. del Carmen Mena M, Albar JP (2013) Next generation instruments and methods for proteomics. In: Cifuentes A (ed) Foodomics: advanced mass spectrometry in modern food science and nutrition. Wiley, Hoboken, pp 15–67

    Google Scholar 

  62. Nakai S, Li‐Chan E (1993) Recent advances in structure and function of food proteins: QSAR approach. Crit Rev Food Sci Nutr 33:477–499

    Article  CAS  PubMed  Google Scholar 

  63. Pripp AH, Isaksson T, Stepaniak L et al (2005) Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends Food Sci Technol 16:484–494

    Article  CAS  Google Scholar 

  64. Hansch C, Leo A, Hoekman DH (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  65. Carrasco-Castilla J, Hernández-Álvarez A, Jiménez-Martínez C et al (2012) Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng Rev 4:224–243

    Article  CAS  Google Scholar 

  66. Majumder K, Wu J (2010) A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res Int 43:1371–1378

    Article  CAS  Google Scholar 

  67. Gu Y, Majumder K, Wu J (2011) QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Res Int 44:2465–2474

    Article  CAS  Google Scholar 

  68. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  69. Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Method 2:41–60

    Article  Google Scholar 

  70. Zompra AA, Galanis AS, Werbitzky O et al (2009) Manufacturing peptides as active pharmaceutical ingredients. Futur Med Chem 1:361–377

    Article  CAS  Google Scholar 

  71. Ludman S, Shah N, Fox AT (2013) Managing cows’ milk allergy in children. BMJ (Clin Res Ed) 347:f5424

    Google Scholar 

  72. Koletzko S, Niggemann B, Arato A et al (2012) Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr 55:221–229

    Article  CAS  PubMed  Google Scholar 

  73. Hartmann R, Wal JM, Bernard H et al (2007) Cytotoxic and allergenic potential of bioactive proteins and peptides. Curr Pharm Des 13:897–920

    Article  CAS  PubMed  Google Scholar 

  74. Kim H-O, Li-Chan ECY (2006) Quantitative structure − activity relationship study of bitter peptides. J Agric Food Chem 54:10102–10111

    Article  CAS  PubMed  Google Scholar 

  75. Friedman M (2005) In: Friedman M, Mottram D (eds) Biological effects of maillard browning products that may affect acrylamide safety in food. Springer, New York, pp 135–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira P. Sarethy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Agyei, D., Danquah, M.K., Sarethy, I.P., Pan, S. (2015). Antioxidative Peptides Derived from Food Proteins. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_26

Download citation

Publish with us

Policies and ethics