Skip to main content

Introduction to Oxidative Stress

  • Chapter
  • First Online:
Book cover Oxidative Stress Mechanisms and their Modulation
  • 1270 Accesses

Abstract

Oxygen as an essential element is critical for energy production and existence of all organisms on earth. However, there are potentially damaging effects also associated with it leading to production of oxygen centered free radicals. These radicals are highly reactive and can cause damage to various biomolecules. Presence of a physiological antioxidant defense system keeps these free radicals in check. Any imbalance in the levels of free radicals or reactive oxygen species (ROS) leads to oxidative stress in the body and may culminate in various patho-physiological conditions. In this chapter we have systematically provided details about the sources of free radicals, their types, their biomarkers and physiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikens J, Dix TA (1991) Perhydroxyl radical (Hoo.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J Biol Chem 266(23):15091–15098

    PubMed  CAS  Google Scholar 

  • Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8:504–512

    PubMed  CAS  Google Scholar 

  • Albina JE, Reichner JS (1998) Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev 17:39–53

    PubMed  CAS  Google Scholar 

  • Babior B, Lambeth J, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    PubMed  CAS  Google Scholar 

  • Banki K, Hutter E, Gonchoroff NJ, Perl A (1999) Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 162:1466–1479

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barnes P, Karin M (1997) Nuclear factor J B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    PubMed  CAS  Google Scholar 

  • Beckman K, Ames B (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    PubMed  CAS  Google Scholar 

  • Beckman J, Koppenol W (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Bergendi L, Benes L, Durackova Z, Ferencik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65:1865–1874

    PubMed  CAS  Google Scholar 

  • Berlett B, Stadtman E (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    PubMed  CAS  Google Scholar 

  • Bielski B, Cabelli D (1995) Superoxide and hydroxyl radical chemistry in aqueous solution. In: Foote C, Valentine J, Greenberg A, Liebman J (eds) Active oxygen in chemistry. Chapman & Hall, London, pp 66–104

    Google Scholar 

  • Bielski B, Cabelli B, Arudi R, Ross A (1985) Reactivity of Ro2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    CAS  Google Scholar 

  • Bogdan C, Rollinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    PubMed  CAS  Google Scholar 

  • Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435

    PubMed  CAS  Google Scholar 

  • Bredt D, Hwang P, Glatt C, Lowenstein C, Reed R, Synder S (1991) 450 reductase. Nature 351:714–718

    PubMed  CAS  Google Scholar 

  • Brune B, Gotz C, Messmer UK, Sandau K, Hirvonen MR, Lapetina EG (1997) Superoxide formation and macrophage resistance to nitric oxide-mediated apoptosis. J Biol Chem 272:7253–7258

    PubMed  CAS  Google Scholar 

  • Bruskov V, Malakhova L, Masalimov Z, Chernikov A (2002) Heat induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res 30:1354–1363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bunn H, Poyton R (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    PubMed  CAS  Google Scholar 

  • Butler AR, Glidewell C, Li MS (1988) Nitrosyl complexes of iron sulfur cluster. Adv Inorg Chem 32:335–392

    CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS et al (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α phenylnitrone. Proc Natl Acad Sci U S A 88:3633–3636

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carr A, Mccall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species-reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20:1716–1723

    PubMed  CAS  Google Scholar 

  • Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A, Kroemer G (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157:512–521

    PubMed  CAS  Google Scholar 

  • Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Coles B, Ketterer B (1990) The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol 25:47–70

    PubMed  CAS  Google Scholar 

  • Czapski G, Goldstein S (1995) The role of the reactions of no with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med 19:785–794

    PubMed  CAS  Google Scholar 

  • Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 369:131–135

    PubMed  CAS  Google Scholar 

  • Davidson CA, Kaminski PM, Wolin MS (1997) Am J Physiol 273:L437–L444

    PubMed  CAS  Google Scholar 

  • Davis K (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262:9895–9901

    Google Scholar 

  • De Grey AD (2002) HO2*: the forgotten radical. DNA Cell Biol 21(4):251–257

    PubMed  Google Scholar 

  • De Vos K, Goossens V, Boone E, Vercammen D, Vancompernolle K, Vandenabeele P, Haegeman G, Fiers W, Grooten J (1998) The 55-Kda tumor necrosis factor receptor induces clustering of mitochondria through its membrane-proximal region. J Biol Chem 273:9673–9680

    PubMed  CAS  Google Scholar 

  • Decuyper-Debergh D, Piette J, Van De Vorst A (1987) Singlet oxygen-induced mutations in M13 lacZ phage DNA. EMBO J 6(10):3155–3161

    PubMed  CAS  PubMed Central  Google Scholar 

  • Demple B, Amabile-Cuevas CF (1991) Redox redux: the control of oxidative stress response. Cell 67:837–840

    PubMed  CAS  Google Scholar 

  • Di Mascio P, Bechara E, Medeiros M, Briviba K, Sies H (1994) Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett 355(3):287–289

    PubMed  Google Scholar 

  • Di Mascio P, Briviba K, Sasaki S, Catalani L, Medeiros M, Bechara E, Sies H (1997) The reaction of peroxynitrite with tert-butyl hydroperoxide produces singlet molecular oxygen. Biol Chem 378(9):1071–1074

    PubMed  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Dumont A, Hehner S, Hofmann T, Ueffing M, Dro¨ Ge W, Schmitz M (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-Kb. Oncogene 18:747–757

    PubMed  CAS  Google Scholar 

  • Enomoto A, Itoh K, Nagayoshie, Haruta J, Kimura T, Harada T, O’connort T, Yamamoto M (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of Are regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177

    PubMed  CAS  Google Scholar 

  • Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H (1996) DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24(21):4105–4110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Esteve J, Mompo J, De La Asuncion J, Sastre J, Asensi M, Boix J, Vina J, Vina J, Pallardo’ F (1999) Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J 13:1055–1064

    PubMed  CAS  Google Scholar 

  • Fandrey J, Frede S, Jelkmann W (1994) Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 303:507–510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    PubMed  CAS  Google Scholar 

  • Faraci FM, Didion SP (2004) Superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367

    PubMed  CAS  Google Scholar 

  • Floyd R (1991) Oxidative damage to behavior during aging. Science 254:1597–97

    PubMed  CAS  Google Scholar 

  • Forman H, Torres M (2001) Redox signaling in macrophages. Mol Aspects Med 22(4–5):189–216

    PubMed  CAS  Google Scholar 

  • Frenette PS, Wagner DD (1996) Adhesion molecules. Part I. N Engl J Med 334:1526–1529

    PubMed  CAS  Google Scholar 

  • Garrison W (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 87:381–398

    CAS  Google Scholar 

  • Gedik CM, Boyle SP, Wood SG, Vaughan NJ, Collins AR (2002) Oxidative stress in humans: validation of biomarkers of DNA damage. Carcinogenesis 23:1441–1446

    PubMed  CAS  Google Scholar 

  • Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190–195

    PubMed  CAS  Google Scholar 

  • Gopaul NK, Halliwell B, Anggård EE (2000) Measurement of plasma F2-isoprostanes as an index of lipid peroxidation does not appear to be confounded by diet. Free Radic Res 33(2):115–127

    PubMed  CAS  Google Scholar 

  • Gottschling B, Maronpot R, Hailey J, Peddada S, Moomaw C, Klaunig J, Nyska A (2001) The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol Sci 64:28–40

    PubMed  CAS  Google Scholar 

  • Griendling KK, Sorescu D, Lasse’Gue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    PubMed  CAS  Google Scholar 

  • Griffiths HR, Moller L, Bartosz G, Bast A, Bertonni-Freddari C, Collins A, Coolen S, Haenen G, Hoberg AM, Loft S, Lunec J, Olinski R, Parry J, Pompella A, Poulsen H, Verhagen H, Astley SB (2002) Biomarkers. Mol Aspects Med 23:101–209

    PubMed  CAS  Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351

    CAS  Google Scholar 

  • Halliwell B (2000) Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res 47(3):410–418

    PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    PubMed  CAS  Google Scholar 

  • Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46:531–542

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutterdgem (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Midsomer Norton

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    PubMed  CAS  PubMed Central  Google Scholar 

  • Halliwell B, Clement M, Long L (2000) Hydrogen peroxide in the human body. FEBS Lett 486:10–13

    PubMed  CAS  Google Scholar 

  • Hamuro J, Murata Y, Suzuki M, Takatsuki F, Suga T (1999) The triggering and healing of tumor stromal inflammatory reactions regulated by oxidative and reductive macrophages. Gann Monogr Cancer Res 48:153–164

    CAS  Google Scholar 

  • Hauptmann N, Cadenas E (1997) The oxygen paradox: biochemistry of active oxygen. In: Oxidative stress and the molecular biology of antioxidant defenses. Csh monographs vol 34. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Hawkins C, Brown B, Davies M (2001) Hypochlorite- and hypochlorite-mediate D radical formation and its role in cell lysis. Arch Biochem Biophys 395:137–145

    PubMed  CAS  Google Scholar 

  • Henderson C, Mclaren A, Moffat G, Bacon E, Wolf C (1998) Pi-class glutathione S-transferase: regulation and function. Chem Biol Interact 111–112:69–82

    PubMed  Google Scholar 

  • Hennet T, Richter C, Peterhans E (1993) Tumor necrosis factor-a induces superoxide anion generation in mitochondria of L929 cells. Biochem J 289:587–592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Henry Y, Lepoivre M, Drapier J, Ducrocq C, Boucher J, Guissani A (1993) Epr characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7:1124–1134

    PubMed  CAS  Google Scholar 

  • Hockenbery D, Oltvai Z, Yin X, Milliman C, Korsmeyer S (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    PubMed  CAS  Google Scholar 

  • Huang L, Arany Z, Livingston D, And Bunn F (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    PubMed  CAS  Google Scholar 

  • Huang L, Gu J, Schau M, Bunn H (1998) Regulation of hypoxia-inducible factor 1a is mediated by it oxygen-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hug H, Enari M, Nagata S (1994) No requirement of reactive oxygen intermediates in Fas-mediated apoptosis. FEBS Lett 351:311–313

    PubMed  CAS  Google Scholar 

  • Hur G, Ryu Y, Yun H, Jeon B, Kim Y, Seok J, Lee J (1999) Hepatic ischemia/reperfusion in rats induces iNOS gene transcription by activation of NF-kappaB. Biochem Biophys Res Commun 261:917–922

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Ann Pharmacol Toxicol 25:171–191

    CAS  Google Scholar 

  • Iida T, Furuta A, Kawashima M, Nishida J, Nakabeppu Y, Iwaki T (2001) Accumulation of 8-Oxo-2-deoxyguanosine and increased expression of Hmth1 protein in brain tumors. Neuro-Oncol 3:73–81

    PubMed  CAS  PubMed Central  Google Scholar 

  • Immenschuh S, Ramadorig (2000) Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol 60:1121–1128

    PubMed  CAS  Google Scholar 

  • Jacobson M, Burne J, Raff M (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13:1899–1910

    PubMed  CAS  PubMed Central  Google Scholar 

  • Janssen Y, Van Houten B, Borm P, Mossman B (1993) Cell and tissue responses to oxidative damage. Lab Invest 69:261–274

    PubMed  CAS  Google Scholar 

  • Jeong J, Juedes M, Wogan G (1998) Mutations induced in the supF gene of pSP189 by hydroxyl radical and singlet oxygen: relevance to peroxynitrite mutagenesis. Chem Res Toxicol 11(5):550–556

    PubMed  CAS  Google Scholar 

  • Johnson T, Yu Z, Ferrans V, Lowenstein R, Finkel T (1996) Reactive oxygen species are downstream mediators of P53-dependent apoptosis. Proc Natl Acad Sci U S A 93:11848–11852

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    PubMed  CAS  Google Scholar 

  • Jones D (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868, Epub 2008 Aug 6

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones SA, O’donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol Heart Circ Physiol 271:H1626–H1634

    CAS  Google Scholar 

  • Joseph J, Cutler R (1994) The role of oxidative stress in signal transduction changes and cell loss in senescence. Ann N Y Acad Sci 738:37

    PubMed  CAS  Google Scholar 

  • Jungermann K, Kietzmann T (1997) Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver. Kidney Int 51:402–412

    PubMed  CAS  Google Scholar 

  • Kanofsky J (1989) Singlet oxygen production by biological systems. Chem Biol Interact 70(1–2):1–28

    PubMed  CAS  Google Scholar 

  • Keisari Y, Braun L, Flescher E (1983) The oxidative burst and related phenomena in mouse macrophages elicited by different sterile inflammatory stimuli. Immunobiology 165:78–89

    PubMed  CAS  Google Scholar 

  • Kilhovd B, Juutilainen A, Lehto S, Rönnemaa T, Torjesen P, Hanssen K, Laakso M (2007) Increased serum levels of advanced glycation end products predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia 50(7):1409–1417, Epub 2007 May 4

    PubMed  CAS  Google Scholar 

  • Klatt P, Lamas S (2000) Regulation of protein function by s glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    PubMed  CAS  Google Scholar 

  • Klebanoff S, Vadas M, Harlan J, Sparks L, Gamble J, Agosti J, Waltersdorph A (1986) Stimulation of neutrophils by tumor necrosis factor. J Immunol 136:4220–4225

    PubMed  CAS  Google Scholar 

  • Klotz Lo, Briviba K, Sies H (2000) Signalling by singlet oxygen in biological systems. Section: reactive species as intracellular messengers. Chapter 1. In: Chandan KS, Helmut S, Bauerle PA (eds) Antioxidant and redox regulations of genes. Academic Press, San Diego

    Google Scholar 

  • Knight T, Kurtz A, Bajt M, Hinson J, Jaeschke H (2001) Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondria L oxidant stress. Toxicol Sci 62:212–220

    PubMed  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    PubMed  CAS  Google Scholar 

  • Korsmeyer S (1995) Regulators of cell death. Trends Genet 11:101–105

    PubMed  CAS  Google Scholar 

  • Lamas S, Marsden P, Li G, Tempst P, Michel T (1992) Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A 89:6348–6352

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lands WEM et al (1984) In: Pryor W (ed) Free radicals in biology, vol 6. Academic, New York, pp 39–61

    Google Scholar 

  • Levine R, Stadtman E (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502

    PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (2002) The Haber–Weiss cycle—70 years later: an alternative view. Redox Rep 7:55–57

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhu B, Luo L, Li P, Paty D, Cynader M (2001) Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. Neuroreport 12:1841–1845

    PubMed  CAS  Google Scholar 

  • Lo’Pez-Barneo J, Pardal R, Montoro R, Smani T, Garcı’A-Hirschfeld J, Urena J (1999) K1 and Ca21 channel activity and cytosolic [Ca21] in oxygen-sensing tissues. Respir Physiol 115:215–227

    Google Scholar 

  • Los M, Droge W, Stricker K, Baeuerle PA, Schulze-Osthoff K (1995) Hydrogen peroxide as a potent activator of T lymphocyte functions. Eur J Immunol 25:159–165

    PubMed  CAS  Google Scholar 

  • Mckersie BD Oxidative stress by, University Of Guelph (Posted on the internet in 1996)

    Google Scholar 

  • Mehta JL, Rasouli N, Sinha AK, Molavi B (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803

    PubMed  CAS  Google Scholar 

  • Meier B, Radeke H, Selle S, Younes M, Sies H, Resch K, Habermehl G (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-a. Biochem J 263:539–545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mendez JI, Nicholson WJ, Taylor WR (2005) Sod isoforms and signaling in blood vessels: evidence for the importance of Ros compartmentalization. Arterioscler Thromb Vasc Biol 25:887–888

    PubMed  CAS  Google Scholar 

  • Milne G, Musiek E, Morrow J (2005) F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10(Suppl 1):S10–S23

    PubMed  CAS  Google Scholar 

  • Miyata T, Maeda K, Kurokawa K, Van Ypersele De Strihou C (1997) Oxidation conspires with glycation to generate noxious advanced glycation end products in renal failure. Nephrol Dial Transplant 12:255–258

    PubMed  CAS  Google Scholar 

  • Mohora M, Greabu M, Muscurel C, Duţă C, Totan A (2007) The sources and the targets of oxidative stress in the etiology of diabetic complications. Romanian J Biophys 17(2):63–84, Bucharest

    CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    PubMed  CAS  Google Scholar 

  • Montuschi P, Barnes P, Roberts L 2nd (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18(15):1791–1800

    PubMed  CAS  Google Scholar 

  • Murphy M, Packer M, Scarlet J, Martin S (1998) Peroxynitrite: a biologically significant oxidant. Gen Pharmacol 31:179–186

    PubMed  CAS  Google Scholar 

  • Neumcke I, Schneider B, Fandrey J, Pagel H (1999) Effects of pro and antioxidative compounds on renal production of erythropoietin. Endocrinology 140:641–645

    PubMed  CAS  Google Scholar 

  • O’donnell V, Spycher S, Azzi A (1995) Involvement of oxidants and oxidant-generating enzyme(S) in tumor necrosis factor-a-mediated apoptosis: role for lipoxygenase pathway but not mitochondrial respiratory chain. Biochem J 310:133–141

    PubMed  PubMed Central  Google Scholar 

  • Ohshima H, Sawa T, Akaike T (2006) 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 8(5–6):1033–1045

    PubMed  CAS  Google Scholar 

  • Pastor N, Weinstein H, Jamison E, Brenowitz M (2000) A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol 304(1):55–68

    PubMed  CAS  Google Scholar 

  • Patel R, Mollering D, Murphy-Ullrich J, Jo H, Beckman J, Darley-Usmar V (2000) Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 28:1780–1794

    PubMed  CAS  Google Scholar 

  • Piette J (1991) Biological consequences associated with DNA oxidation mediated by singlet oxygen. J Photochem Photobiol B 11(3–4):241–260

    PubMed  CAS  Google Scholar 

  • Poss W, Huecksteadt T, Panus P, Freeman B, Hoidal J (1996) Regulation of xanthine dehydrogenase and xanthine oxidase activity by hypoxia. Am J Physiol Lung Cell Mol Physiol 270:L941–L946

    CAS  Google Scholar 

  • Preiser J-C (2012) Oxidative stress. J Parenter Enter Nutr 36(2):147–154

    CAS  Google Scholar 

  • Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schwezer M, Suter M, Walter P (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  • Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N et al (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385:1–10

    PubMed  CAS  Google Scholar 

  • Saran M, Bors W (1989) Oxygen radicals acting as chemical messengers: a hypothesis. Free Rad Res Commun 7:3–6

    Google Scholar 

  • Schafer F, Buettnergr (2001) Redox environments of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med 30:1191–1212

    PubMed  CAS  Google Scholar 

  • Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) Pp125fak a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89:5192–5196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulze-Osthoff K, Bakker A, Vanhaesebroeck B, Beyaert R, Jacob W, And Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323

    PubMed  CAS  Google Scholar 

  • Semenza G (2000) Hif-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    PubMed  CAS  Google Scholar 

  • Sen CK (2000) Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 36:1–30

    PubMed  CAS  Google Scholar 

  • Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32(3–4):307–326

    PubMed  CAS  Google Scholar 

  • Shalaby M, Aggarwal B, Rinderknecht E, Svedersky L, Finkle B, Palladino M Jr (1985) Activation of human polymorphonuclear neutrophil functions by interferon-G and tumor necrosis factor. J Immunol 135:2069–2073

    PubMed  CAS  Google Scholar 

  • Slater A, Stefan C, Novel I, Van Den Dobbelsteen D, Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82–83:149–153

    PubMed  Google Scholar 

  • Sohal R, Allen R (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25:499–522

    PubMed  CAS  Google Scholar 

  • Steinbeck MJ, Khan AU, Karnovsky MJ (1992) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem 267(19):13425–13433

    PubMed  CAS  Google Scholar 

  • Steinbeck MJ, Khan AU, Karnovsky MJ (1993) Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film. J Biol Chem 268(21):15649–15654

    PubMed  CAS  Google Scholar 

  • Takahashi S, Hirose M, Tamano S, Ozaki M, Orita S, Ito T, Takeuchi M, Ochi H, Fukada S, Kasai H, Shirai T (1998) Immunohistochemical detection of 8-hydroxy-2-deoxyguanosinE in paraffin embedded sections of rat liver after carbon tetrachloride treatment. Toxicol Pathol 26:247–252

    PubMed  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (1995) Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270:30334–30338

    PubMed  CAS  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    PubMed  CAS  Google Scholar 

  • Um H, Orenstein J, Wahl S (1996) Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway. J Immunol 156:3469–3477

    PubMed  CAS  Google Scholar 

  • Upham B, Wagner J (2001) Toxicant-induced oxidative stress in cancer. Toxicol Sci 64:1–3

    PubMed  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Mark TD, Cronin C, Milan M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Google Scholar 

  • Vincent J, Zhang H, Szabo C, Preiser J (2000) Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 161:1781–1785

    PubMed  CAS  Google Scholar 

  • Von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  • Wang G, Jiang B, Rue E, Semenza G (1995) Hypoxia-inducible factor 1 is a basic helix-loop-helix-Pas heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weinstein D, Mihm M, Bauer J (2000) Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 294:396–401

    PubMed  CAS  Google Scholar 

  • Williams M, Henkart P (1996) Role of reactive oxygen intermediates in Tcr-induced death of T cell blasts and hybridomas. J Immunol 157:2395–2402

    PubMed  CAS  Google Scholar 

  • Wolin MS, Burke-Wolin TM, Mohazzab-H KM (1999) Roles of NADPH oxidases and reactive oxygen species in vascular oxygen sensing mechanisms. Respir Physiol 115:229–238

    PubMed  CAS  Google Scholar 

  • Wu J (1993) Advanced glycosylation end products: a new disease marker for diabetes and aging. J Clin Lab Anal 7(5):252–255

    PubMed  CAS  Google Scholar 

  • Wyllie A, Kerr J, Currie A (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    PubMed  CAS  Google Scholar 

  • Xie Q, Cho H, Calaycay J, Mumford R, Swiderek K, Lee T, Ding A, Troso T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    PubMed  CAS  Google Scholar 

  • Zamzami Marchetti N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin S, Petit P, Mignotte B, Kroemer G (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Google Scholar 

  • Zhu H, Bunn H (1999) Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir Physiol 115:239–247

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Bansal, M., Kaushal, N. (2014). Introduction to Oxidative Stress. In: Oxidative Stress Mechanisms and their Modulation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2032-9_1

Download citation

Publish with us

Policies and ethics