Vigna Species

  • Norihiko Tomooka
  • Takehisa Isemura
  • Ken Naito
  • Akito Kaga
  • Duncan Vaughan
Chapter

Abstract

The scientific information about the genus Vigna, which contains nine important food legumes, has been accumulated in the past decade. In this chapter, progress of the genetics of domestication, important agronomic traits, ecological adaptations, and genomic information are summarized. Domestication genetics revealed by a detailed Quantitative trait locus (QTL) analysis for mung bean, black gram, azuki bean, rice bean, and yard-long bean have been described and compared. Amazing abilities of some wild Vigna species to adapt harsh environments were described. Some outstanding examples are adaptation to sandy and saline soils by V. marina and V. trilobata, alkaline limestone rock soils by V. exilis, exposed windy cliff top environments by V. riukiuensis, waterlogged riverside by V. luteola, and shady forests by V. minima. Vigna genome project which is under way and aims to sequence 16 Vigna species will provide a foundation of clarifying genes which are responsible for the abilities to survive under extreme environments.

References

  1. Agbicodo EM, Fatokun CA, Bandyopadhyay R, Wydra K, Diop N-N, Muchero W, Ehlers JD, Roberts PA, Close TJ, Visser RGF, van der Linden CG (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica 175:215–226Google Scholar
  2. Ahmad NS (2012) Genetic analysis of plant morphology in bambara groundnut [Vigna subterranea (L.) Verdc.]. PhD thesis, University of Nottingham. Available from http://etheses.nottingham.ac.uk/3150/1/Thesis_for_Nariman_Ahmad.pdf. Accessed July 2014
  3. Aitawade MM, Sutar SP, Rao SR, Malik SK, Yadav SR, Bhat KV (2012) Section Ceratotropis of subgenus Ceratotropis of Vigna (Leguminosae – Papilionoideae) in India with a new species from the northern Western Ghats. Rheedea 22(1):20–27Google Scholar
  4. Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS ONE 6(1):e16404. doi:10.1371/journal.pone.0016404 PubMedPubMedCentralGoogle Scholar
  5. Andargie M, Remy S, Pasquet RS, Gowda BS, Muluvi GM, Timko MP (2011) Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breed 28:413–420Google Scholar
  6. Andargie M, Pasquet RS, Muluvi GM, Timko MP (2013) Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata). Genome 56:289–294PubMedGoogle Scholar
  7. Arora RK, Nayar ER (1984) Wild relatives of crops in India. NBPGR science monograph no. 7, Published by the National Bureau of Plant Genetic Resources, IndiaGoogle Scholar
  8. Arora RK, Chandel KPS, Joshi BS, Pant KC (1980) Rice bean: tribal pulse of eastern India. Econ Bot 34:260–263Google Scholar
  9. Babu CR, Sharma SK, Johri BM (1985) Leguminosae-Papilionoideae: tribe – Phaseoleae. Bull Bot Surv India 27:1–28Google Scholar
  10. Bervillé A, Breton C, Cunliffe K, Darmency H, Good AG, Gressel J, Hall LM, McPherson MA, Medail F, Pinatel C, Vaughan DA, Warwick SI (2005) Issues of ferality in oats, olives, the Vigna group, ryegrass species, safflower and sugarcane. In: Gressel J (ed) Crop ferality and volunteerism, vol 15. CRC Press, Boca Raton, pp 231–255Google Scholar
  11. Brink M, Belay G (2006) Plant resources of tropical Africa. Cereals and Pulses Prota Foundation/Backhuy Publishers, Wageningen, p 298Google Scholar
  12. Burkill HM (1995) The useful plants of West tropical Africa, Families J–L, vol 3, 2nd edn. Royal Botanic Gardens, Kew, p 857Google Scholar
  13. Chaisan T, Somta P, Srinives P, Chanprame S, Kaveeta R, Dumrongkittikule S (2013) Development of tetraploid plants from an interspecific hybrid between mungbean (Vigna radiata) and rice bean (Vigna umbellata). J Crop Sci Biotechnol 16(1):45–51Google Scholar
  14. Chaitieng B, Kaga A, Han OK, Wang XW, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew (Erysiphe polygoni DC.) in mungbean [Vigna radiata (L.) Wilczek]. Plant Breed 121:521–525Google Scholar
  15. Chaitieng B, Kaga A, Tomooka N, Isemura T, Kuroda Y, Vaughan DA (2006) Development of a black gram [Vigna mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] linkage map. Theor Appl Genet 113:1261–1269PubMedGoogle Scholar
  16. Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264Google Scholar
  17. Chankaew S, Somta P, Isemura T, Tomooka N, Kaga A, Vaughan DA, Srinives P (2013) QTL mapping reveals conservation of major and minor loci for powdery mildew resistance in different sources of resistance in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed 213:121–130Google Scholar
  18. Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, Somta P, Kaga A, Vaughan DA, Srinives P (2014a) QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga; a halophytic species related to legume crops. Theor Appl Genet 127(3):691–702PubMedGoogle Scholar
  19. Chankaew S, Isemura T, Isobe S, Kaga A, Tomooka N, Somta P, Hirakawa H, Shirasawa K, Vaughan DA, Srinives P (2014b) Detection of genome donor species of neglected tetraploid crop Vigna reflexo-pilosa (créole bean), and genetic structure of diploid species based on newly developed EST-SSR markers from azuki bean (Vigna angularis) (Accepted in PloS ONE)Google Scholar
  20. Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264Google Scholar
  21. Chen HM, Ku HS, Schafleitner R, Bains TS, Kuo CG, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216Google Scholar
  22. Crawford GW (2005) East Asian plant domestication. In: Stark MT (ed) The archaeology of Asia. Blackwell, Oxford, pp 78–95Google Scholar
  23. D’Andrea AC, Kahlheber S, Logan AL, Watson DJ (2007) Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity 81(2007):686–698Google Scholar
  24. Damayanti F, Lawn CDRJ, Bielig LM (2010a) Expression of qualitative and quantitative traits in hybrids between domesticated and wild accessions of the tropical tuberous legume Vigna vexillata (L.) A. Rich. Crop Pasture Sci 61(10):798–811Google Scholar
  25. Damayanti F, Lawn CDRJ, Bielig LM (2010b) Genetic compatibility among domesticated and wild accessions of the 2 tropical tuberous legume Vigna vexillata (L.) A. Rich. Crop Pasture Sci 61(10):785–797Google Scholar
  26. Dixit TM, Sutar SP, Yadav SR, Bhat KV, Rao SR (2011) Vigna indica, a new name for Vigna trilobata var. pusilla and a note on section Aconitifoliae in India. Rheedea 21(1):1–7Google Scholar
  27. Egawa Y, Tomooka N (1994) Phylogenetic differentiation of Vigna species in Asia. JIRCAS Int Symp Ser 2:112–120Google Scholar
  28. Fatokun CA, Menancio-Hautea DI, Dariush D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132:841–846PubMedPubMedCentralGoogle Scholar
  29. Fatokun CA, Young ND, Myers GO (1997) Molecular markers and genome mapping in cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. International Institute of Tropical Agriculture (IITA)/Japan International Research Center for Agricultural Sciences (JIRCAS), IbadanGoogle Scholar
  30. Fuller DQ (2003) African crops in prehistoric South Asia: a critical review. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields. Progress in African archaeobotany, vol 15, Africa praehistorica. Heinrich-Barth Institute, Cologne, pp 239–271Google Scholar
  31. Fuller D (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924PubMedPubMedCentralGoogle Scholar
  32. Fuller DQ, Harvey E (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol 11:219–246Google Scholar
  33. Fuller DQ, Boivin N, Hoogervorst T, Allaby R (2011) Across the Indian Ocean: the prehistoric movement of plants and animals. Antiquity 85:544–558Google Scholar
  34. Gupta SK, Souframanien J, Gopalakrishna T (2008) Construction of a genetic linkage map of black gram, Vigna mungo (L.) Hepper, based on molecular markers and comparative studies. Genome 51:628–637PubMedGoogle Scholar
  35. Gupta S, Gupta DS, Anjum TK, Pratap A, Kumar J (2013) Inheritance and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L. Hepper). Euphytica 193:27–37Google Scholar
  36. Han OK, Kaga A, Isemura T, Wang XW, Tomooka N, Vaughan DA (2005) A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 111:1278–1287PubMedGoogle Scholar
  37. Humphry ME, Konduri V, Lambrides CJ, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2002) Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet 105:160–166PubMedGoogle Scholar
  38. Humphry ME, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2003) Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 46:738–744PubMedGoogle Scholar
  39. Humphry ME, Lambrides CJ, Chapman SC, Aitken EAB, Imrie BC, Lawn RJ, McIntyre CL, Liu CJ (2005) Relationships between hard-seededness and seed weight in mungbean (Vigna vadiata) assessed by QTL analysis. Plant Breed 124:292–298Google Scholar
  40. Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100:1053–1071PubMedPubMedCentralGoogle Scholar
  41. Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA (2010) Construction of a genetic linkage map and genetic analysis of the domestication related traits in rice bean (Vigna umbellata). Ann Bot 106:927–944PubMedPubMedCentralGoogle Scholar
  42. Isemura T, Tomooka N, Kaga A, Vaughan DA (2011) Comparison of the pattern of crop evolution between two Asian beans, azuki bean (Vigna angularis) and rice bean (V. umbellata). Jpn Agric Res Q 45(1):23–30Google Scholar
  43. Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7(8):e41304. doi:10.1371/journal.pone.0041304 PubMedPubMedCentralGoogle Scholar
  44. Jain HK, Mehra KL (1980) Evolution, adaptation, relationships and uses of the species of Vigna cultivated in India. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Volume 1 of the proceedings of the international legume conference, Published by the Royal Botanic Gardens Kew, UK, pp 459–468Google Scholar
  45. Jayasuriya AHM (2012) The longest legume inflorescence in Sri Lanka. Ceylon J Sci (Biol Sci) 41:79–82Google Scholar
  46. Kaga A, Ishimoto M (1998) Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Genet Genomics 258:378–384Google Scholar
  47. Kaga A, Ohnishi M, Ishii T, Kamijima O (1996) A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis x V. nakashimae). Theor Appl Genet 93:658–663PubMedGoogle Scholar
  48. Kaga A, Ishii T, Tsukimoto K, Tokoro E, Kamijima O (2000) Comparative molecular mapping in Ceratotropis species using an interspecific cross between V. umbellata and V. angularis. Theor Appl Genet 100:207–213Google Scholar
  49. Kaga A, Han OK, Wang XW, Egawa Y, Tomooka N, Vaughan DA (2003) Vigna angularis as a model for legume research. In: Jayasuriya AHM, Vaughan DA (eds) Conservation and use of wild relatives of crops. Proceedings of the Joint Department of Agriculture, Sri Lanka and National Institute of Agrobiological Sciences, Japan. Workshop. Department of Agriculture, Peradeniya, Sri Lanka, pp 51–74Google Scholar
  50. Kaga A, Vaughan DA, Tomooka N (2005) Molecular markers in plant breeding and crop improvement of Vigna. In: Lörz H, Wenzel G (eds) Molecular markers in plant breeding and crop improvement, Biotechnology in agriculture and forestry. Springer, Heidelberg, pp 171–187Google Scholar
  51. Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036PubMedPubMedCentralGoogle Scholar
  52. Kajonphol T, Sangsiri C, Somta P, Toojinda T, Srinives P (2012) SSR map construction and quantitative trait loci (locus) identification of major agronomic traits in mungbean (Vigna radiata (L.) Wilczek). SABRAO J Breed Genet 44:71–86Google Scholar
  53. Karuniawan A, Isawandi A, Kale PR, Heinzemann J, Grüneberg WJ (2006) Vigna vexillata (L.) A. Rich. Cultivated as a root crop in Bali and Timor. Genet Resour Crop Evol 53:213–217Google Scholar
  54. Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotechnol 13(3):155–161Google Scholar
  55. Kashiwaba K, Tomooka N, Kaga A, Han OK, Vaughan DA (2002) Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata) factors in rice bean (Vigna umbellata). J Econ Entomol 96:207–213Google Scholar
  56. Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM, Nair RM, Bains TS, Sirari A, Kaur L, Srinives P (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed Sci 63:367–373PubMedPubMedCentralGoogle Scholar
  57. Konarev AV, Tomooka N, Vaughan DA (2002) Proteinase inhibitor polymorphism in the genus Vigna subgenus Ceratotropis and its biosystematic implications. Euphytica 123:165–177Google Scholar
  58. Kondo N, Tomooka N (2012) New sources of resistance to Cadophora gregata f. sp. Adzukicola and Fusarium oxysporum f. sp. Adzukicola in Vigna spp. Plant Dis 96(4):562–568Google Scholar
  59. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan DA, Srinives P (2012a) An SSR-based linkage map of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis (L.) Verdc.] and QTL analysis for pod length. Genome 55(2):81–92PubMedGoogle Scholar
  60. Kongjaimun A, Kaga A, Tomooka N, Somta P, Vaughan DA, Srinives P (2012b) The genetics of domestication of yardlong bean Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann Bot 109:1185–1200PubMedPubMedCentralGoogle Scholar
  61. Kongjaimun A, Somta P, Tomooka N, Kaga A, Vaughan DA, Srinives P (2013) QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis]. Euphytica 189:217–223. doi:10.1007/s10681-012-0781-2 Google Scholar
  62. Kushida A, Tazawa A, Aoyama S, Tomooka N (2013) Novel sources of resistance to the soybean cyst nematode (Heterodera glycines) found in the wild relatives of azuki bean (Vigna angularis) and their characteristics of resistance. Genet Resour Crop Evol 60:985–994Google Scholar
  63. Lambrides CJ, Lawn RJ, Godwin ID, Manners J, Imrie BC (2000) Two genetic linkage maps of mungbean using RFLP and RAPD markers. Aust J Agr Res 51:415–425Google Scholar
  64. Lucas MR, Diop N-N, Wanamaker S, Ehlers JD, Roberts PA, Close TJ (2011) Cowpea–soybean synteny clarified through an improved genetic map. Plant Genome 4:218–225Google Scholar
  65. Lucas MR, Ehlers JD, Roberts PA, Close TJ (2012) Markers for quantitative inheritance of resistance to foliar thrips in cowpea. Crop Sci 52:2075–2081Google Scholar
  66. Lucas MR, Ehlers JD, Huynh B-L, Diop N-N, Roberts PA, Close TJ (2013a) Markers for breeding heat-tolerant cowpea. Mol Breed 31:529–536Google Scholar
  67. Lucas MR, Huynh B-L, da SilvaVinholes P, Cisse N, Drabo I, Ehlers JD, Roberts PA, Close TJ (2013b) Association studies and legume synteny reveal haplotypes determining seed size in Vigna unguiculata. Front Plant Sci Plant Genet Genomics 4:95Google Scholar
  68. Lumpkin TA, McClary DC (1994) Azuki bean: botany, production, and uses. CAB International, Wallingford, p 268Google Scholar
  69. Maxted N, Mabuza-Dlamini P, Moss H, Padulosi S, Jarvis A, Guarino L (2004) An ecogeographic study. African Vigna. International Plant Genetic Resources Institute, RomeGoogle Scholar
  70. Mei L, Cheng XZ, Wang SH, Wang LX, Liu CY, Sun L, Xu N, Humphry ME, Lambrides CJ, Li HB, Liu CJ (2009) Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome 52:589–596PubMedGoogle Scholar
  71. Menacio-Hautea D, Kumar L, Danesh D, Young ND (1992) A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2n = 2x = 22). In: O’Brien JS (ed) Genetic maps. A compilation of linkage and restriction maps of genetically studied organisms. Cold Spring Harbor, New York, pp 6259–6261Google Scholar
  72. Menacio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L.Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810Google Scholar
  73. Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217Google Scholar
  74. Muchero W, Ehlers JD, Close TJ, Roberts PA (2009a) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118:849–863PubMedGoogle Scholar
  75. Muchero W, Diop N-N, Bhatb PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009b) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci U S A 106:18159–18164PubMedPubMedCentralGoogle Scholar
  76. Muchero W, Ehlers JD, Roberts PA (2010a) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25:47–56PubMedPubMedCentralGoogle Scholar
  77. Muchero W, Ehlers JD, Roberts PA (2010b) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 120:509–518PubMedPubMedCentralGoogle Scholar
  78. Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8PubMedPubMedCentralGoogle Scholar
  79. Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L.Walp.). Euphytica 91:181–187Google Scholar
  80. Naito K, Kaga A, Tomooka N, Kawase M (2013) De novo assembly of the complete organelle genome sequence of azuki bean (Vigna angularis) using next generation sequencers. Breed Sci 63(2):176–182PubMedPubMedCentralGoogle Scholar
  81. Ng NQ, Maréchal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 11–21Google Scholar
  82. Ogundiwin EA, Thottappilly G, Aken’Ova ME, Pillay M, Fatokun CA (2005) A genetic linkage map of Vigna vexillata. Plant Breed 124:392–398Google Scholar
  83. Omo-Ikerodah EE, Fawole I, Fatokun CA (2008) Genetic mapping of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) identified in recombinant inbred lines of cowpea (Vigna unguiculata (L.) Walp). Afr J Biotechnol 7:263–270Google Scholar
  84. Ouédraogo JT, Maheshwari V, Berner DK, St-Pierre CA, Belzile F, Timko MP (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036Google Scholar
  85. Ouédraogo JT, Tignegre JB, Timko MP, Belzile FJ (2002a) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45:787–793PubMedGoogle Scholar
  86. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie RPA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002b) An improved genetic linkage maps for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and resistance traits. Genome 45:175–188PubMedGoogle Scholar
  87. Padulosi S, Ng NQ (1993) A useful and unexploited herb, Vigna marina (Leguminosae-Papilionoideae) and the taxonomic revision of its genetic diversity. Bull Jardin Bot Natl Belg 62:119–126Google Scholar
  88. Pandiyan M, Senthil N, Ramamoorthi N, Muthiah AR, Tomooka N, Vaughan DA, Jayaraj T (2010) Interspecific hybridization of Vigna radiata X 13 wild Vigna species for developing MYMV donor. Electron J Plant Breed 1(4):600–610Google Scholar
  89. Pandiyan M, Senthil N, Suersh R, Chakravarthy N, Packiaraj D, Jagadeesh S (2012) Interspecific hybridization of Vigna radiata × Vigna trilobata. Wudpecker J Agric Res 16:233–234Google Scholar
  90. Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA, Close TJ (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS One 7:e41600PubMedPubMedCentralGoogle Scholar
  91. Pottorff M, Ehlers JD, Fatokun C, Roberts PA, Close TJ (2013) Leaf morphology in cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC Genomics 13:234Google Scholar
  92. Prathet P, Somta P, Srinives P (2012) Mapping QTL conferring resistance to iron deficiency chlorosis in mungbean [Vigna radiata (L.) Wilczek]. Field Crop Res 137:230–236Google Scholar
  93. Rodrigues MA, Santos CAF, Santana JRF (2012) Mapping of AFLP loci linked to tolerance to cowpea golden mosaic virus. Genet Mol Res 11:3789–3797PubMedGoogle Scholar
  94. Rungnoi O, Chanprem S, Toojinda T, Godwin I, Lambrides C, Srinives P (2010) Characterization, inheritance, and molecular study of opaque leaf mutant in mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotechnol 13:219–226Google Scholar
  95. Sangiri C, Kaga A, Tomooka N, Vaughan DA, Srinives P (2007) Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool based on microsatellite analysis. Aust J Bot 55:837–847Google Scholar
  96. Seehalak W, Tomooka N, Waranyuwat A, Thipyapong P, Laosuwan P, Kaga A, Vaughan DA (2006) Genetic diversity of the Vigna germplasm from Thailand and neighboring regions revealed by AFLP analysis. Genet Resour Crop Evol 53:1043–1059Google Scholar
  97. Sholihin, Hautea MD (2002) Molecular mapping of drought resistance in mungbean (Vigna radiata): 2. QTL linked drought resistance. Jurnal Bioteknologi Pertanian 7:55–61Google Scholar
  98. Somta P, Kaga A, Tomooka N, Kashiwaba K, Isemura T, Chaitieng B, Srinives P, Vaughan DA (2006) Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V. nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics. Plant Breed 125:77–84Google Scholar
  99. Somta P, Kaga A, Tomooka N, Isemura T, Vaughan DA, Srinives P (2008a) Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalensis Tateishi & Maxted (Vigna subgenus Ceratotropis). Theor Appl Genet 117:621–628PubMedGoogle Scholar
  100. Somta C, Somta P, Tomooka N, Ooi PAC, Vaughan DA, Srinives P (2008b) Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). J Stored Prod Res 44:316–321Google Scholar
  101. Sonnante G, Spinosa A, Marangi A, Pignone D (1997) Isozyme and RAPD analysis of genetic diversity within and between Vigna luteola and V. marina. Ann Bot 80:741–746Google Scholar
  102. Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram [Vigna mungo (L.) Hepper]. Euphytica 176:349–356Google Scholar
  103. Srinives P, Kitsanachandee R, Chalee T, Sommanas W, Chanprame S (2010) Inheritance of resistance to iron deficiency and identification of AFLP markers associated with the resistance in mungbean (Vigna radiata (L.) Wilczek). Plant Soil 335:423–437Google Scholar
  104. Sudha M, Anusuya P, Ganesh NM, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Balasubramanian P (2012) Molecular studies on mungbean (Vigna radiata (L.) Wilczek) and ricebean (Vigna umbellata (Thunb.)) interspecific hybridization for Mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean. Phytopathol Plant Prot 46(5):503–517Google Scholar
  105. Sudha M, Karthikeyan A, Anusuya P, Ganesh NM, Pandiyan M, Senthil N, Raveendran M, Nagarajan P, Angappan K (2013) Inheritance of resistance to Mungbean yellow mosaic virus (MYMV) in inter and intra specific crosses of mungbean (Vigna radiata). Am J Plant Sci 4:1924–1927Google Scholar
  106. Sunitha S, Shanmugapriya G, Balamani V, Veluthambi K (2013) Mungbean yellow mosaic virus (MYMV) AC4 suppresses post-transcriptional gene silencing and an AC4 hairpin RNA gene reduces MYMV DNA accumulation in transgenic tobacco. Virus Genes 46:496–504PubMedGoogle Scholar
  107. Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2010) The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 17:11–22PubMedPubMedCentralGoogle Scholar
  108. Tian T, Isemura T, Kaga A, Vaughan DA, Tomooka N (2013) The genetic diversity of the rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi] genepool as assessed by SSR markers. Genome 56: 717–727Google Scholar
  109. Tomooka N (2007) Archaeological remains of azuki bean (Vigna angularis). Google map http://maps.google.co.jp/maps/ms?hl=ja&ie=UTF8&msa=0&msid=101458218381458921300.000001124500bf8f41d2b&z=5&om=1
  110. Tomooka N (2009) The origins of rice bean (Vigna umbellata) and azuki bean (V. angularis). The evolution of two lesser-known Asian beans. In: Akimachi T (ed) An illustrated eco-history of the Mekong River Basin. Lotus Co. Ltd, Bangkok, pp 33–35Google Scholar
  111. Tomooka N, Kashiwaba K, Vaughan DA, Ishimoto M, Egawa Y (2000) The effectiveness of evaluation using a species level core collection: a case study of searching for sources of resistance to bruchid beetles in species of the genus Vigna subgenus Ceratotropis. Euphytica 115:27–41Google Scholar
  112. Tomooka N, Kaga A, Egawa Y, Vaughan DA, Kashiwaba K, Doi K (2001) Searching for sources of vegetative stage high temperature tolerance in the genus Vigna subgenus Ceratotropis. Jpn J Trop Agric 45:47–48. (in Japanese with English summary)Google Scholar
  113. Tomooka N, Vaughan DA, Moss H, Maxted N (2002a) The Asian Vigna: the genus Vigna subgenus Ceratotropis genetic resources. Kluwer Academic, Dordrecht, p 270Google Scholar
  114. Tomooka N, Yoon MS, Doi K, Kaga A, Vaughan DA (2002b) AFLP analysis of a Vigna subgenus Ceratotropis core collection. Genet Resour Crop Evol 49:521–530Google Scholar
  115. Tomooka N, Maxted N, Thavarasook C, Jayasuriya AHM (2002c) Two new species, new species combinations and sectional designations in Vigna subgenus Ceratotropis (Piper) Verdcourt (Leguminosae, Phaseoleae). Kew Bull 57(3):613–624Google Scholar
  116. Tomooka N, Kaga A, Vaughan DA (2006) The Asian Vigna (Vigna subgenus Ceratotropis) biodiversity and evolution. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution. Part C phanerogams (angiosperms – dicotyledons), vol 1. Science Publishers, Enfield, pp 87–126Google Scholar
  117. Tomooka N, Kaga A, Isemura T, Naito K, Vaughan DA (2010) Neo-domestication of Vigna (Leguminosae) and identification of Multiple Organ Gigantism (mog) mutant of cultivated black gram (Vigna mungo). Gamma Field Symp (NIAS) 49:41–49. (in English with Japanese summary)Google Scholar
  118. Tomooka N, Pandiyan M, Senthil N (2011a) Conservation of leguminous crops and their wild relatives in Tamil Nadu, India. Annual report on exploration and introduction of plant genetic resources. NIAS 27:111–127. http://www.gene.affrc.go.jp/pdf/publications/plant-exp_2010(27)_p111.pdf
  119. Tomooka N, Kaga A, Isemura T, Kuroda Y, Vaughan DA, Srinives P, Somta P, Thadavong S, Bounphanousay C, Kanyavong K, Inthapanya P, Pandiyan M, Sentil N, Ramamoorthi N, Jaiwal PK, Jing T, Umezawa K, Yokoyama T (2011b) Vigna genetic resources. Genetic resources and comparative genomics of legumes (Glycine and Vigna). In: 14th NIAS international workshop on genetic resources, NIAS, Tsukuba, pp 11–21 fullstop. http://www.gene.affrc.go.jp/pdf/misc/international-WS_14_11.pdf
  120. Tomooka N, Fukui K, Chankaew S, Iizumi T, Hirashima S (2013) Collection and conservation of wild leguminous crop relatives on Goto islands, Nagasaki, Japan, 2012. Annual report on exploration and introduction of plant genetic resources, NIAS 29:19–43. http://www.gene.affrc.go.jp/pdf/publications/plant-exp_2012(29)_p19.pdf
  121. Ubi BE, Mignouna H, Thottappilly G (2000) Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breed Sci 50:161–172Google Scholar
  122. Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:202–210PubMedGoogle Scholar
  123. Vaughan DA, Balázs E, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot 100(6):893–901PubMedPubMedCentralGoogle Scholar
  124. Xu RQ, Tomooka N, Vaughan DA, Doi K (2000a) The Vigna angularis complex: genetic variation and relationships revealed by RAPD analysis, and their implications for in situ conservation and domestication. Genet Resour Crop Evol 47:123–134Google Scholar
  125. Xu RQ, Tomooka N, Vaughan DA (2000b) AFLP markers for characterizing the azuki bean (Vigna angularis) complex. Crop Sci 40:808–815Google Scholar
  126. Xu HX, Jing T, Tomooka N, Kaga A, Isemura T, Vaughan DA (2008) Genetic diversity of the azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] genepool as assessed by SSR markers. Genome 51:728–738PubMedGoogle Scholar
  127. Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, Roberts PA, Diop N-N, Qin D, Hu T, Lu Z, Li G (2011a) A SNP and SSR based genetic map of asparagus bean (Vigna unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoS One 6(1):e15952PubMedPubMedCentralGoogle Scholar
  128. Xu P, Hu T, Yang Y, Wu X, Wang B, Liu Y, Qin D, Ehlers JD, Close TC, Lu Z, Li G (2011b) Mapping genes governing flower and seed coat color in asparagus bean (Vigna unguiculata. ssp. sesquipedalis) based on SNP and SSR markers. HortScience 46:1102–1104Google Scholar
  129. Xu P, Wu X, Wang B, Hu T, Lu Z, Liu Y, Qin D, Wang S, Li G (2013) QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genet 14:4PubMedPubMedCentralGoogle Scholar
  130. Yamaguchi H (1992) Wild and weed azuki beans in Japan. Econ Bot 46:384–394Google Scholar
  131. Yoon MS, Doi K, Kaga A, Tomooka N, Vaughan DA (2000) Analysis of the genetic diversity in the Vigna minima complex and related species in East Asia. J Plant Res 113(4):375–386Google Scholar
  132. Yoon MS, Lee J, Lim CY, Baek HJ (2007) Genetic relationships among cultivated and wild Vigna angularis (willd.) Ohwi et Ohashi and relatives from Korea based on AFLP markers. Genet Resour Crop Evol 54:575–883Google Scholar
  133. Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmhgassundarum S, Kim DH (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L., Wilczek). Theor Appl Genet 84:839–844PubMedGoogle Scholar
  134. Young ND, Danesh D, Menancio-Hautea D, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87:243–249PubMedGoogle Scholar
  135. Zhao D, Cheng X-Z, Wang L-X, Wang S-H, Ma Y-L (2010) Integration of mungbean (Vigna radiata) genetic linkage map. Acta Agron Sin 36:932–939 (in Chinese with English abstract)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Norihiko Tomooka
    • 1
  • Takehisa Isemura
    • 1
  • Ken Naito
    • 1
  • Akito Kaga
    • 1
  • Duncan Vaughan
    • 1
  1. 1.Genetic Resources CenterNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations