Pigeonpea was labeled as an orphan crop but is now a trendy and pacesetter, with ample genetic and genomic information becoming available in recent times. It is now possible to cross wild relatives not only from the Cajanus group placed in the secondary and tertiary gene pool but also the related genera placed in the quaternary gene pool. This is no small achievement for a legume which is an important crop of Asia and Africa and plays a major role in the diet of majority of the people of this region. The need of the hour is further committed research on wide crosses in pigeonpea.


Gene Pool Wild Relative Progeny Line Phytophthora Blight Primary Gene Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bakshu L, Venkataraju RR (2001) Antimicrobial activity of Rhynchosia beddomei. Fitoterpia 72:579–582CrossRefGoogle Scholar
  2. Bantilan MCS, Joshi PK (1996) Returns to research and diffusion investments on wilt resistance in pigeonpea. Impact series (No. 1) Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics, p 36Google Scholar
  3. Bohra A, Mallikarjuna N, Saxena K, Upadhyaya HD, Vales I et al (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Appl Biol 37:83–98Google Scholar
  4. Chao S, Sharp PJ, Worland AJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504PubMedCrossRefGoogle Scholar
  5. Cherian CA, Mallikarjuna N, Jadhav DR, Saxena KB (2006) Open flower segregants selected from Cajanus platycarpus crosses. J SAT Agric Res 2:1–2, ISSN 0973-3094Google Scholar
  6. Choudhary P, Khanna SM, Jain PK, Bharadwaj C, Kumar J, Lakhera PC et al (2011) Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genet Mol Res 11:891–905CrossRefGoogle Scholar
  7. Drabu S, Chaturvedi S, Sharma M (2011) Analgesic activity of methanolic extract from aerial parts of Rhynchosia capitata DC. Int J Pharm Technol 3:3590–3600Google Scholar
  8. FAO (2009) FAO stat databases. Retrieved from:
  9. Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059. doi: 10.1093/jxb/ers192 PubMedCrossRefGoogle Scholar
  10. Flagel LE, Chen L, Chaudhary B, Wendel JF (2009) Coordinated and fine scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100:487–490PubMedCrossRefGoogle Scholar
  11. Fuller DQ, Harvey E (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol 11:219–246CrossRefGoogle Scholar
  12. Galili G, Feldman M (1984) Intergenomic suppression of endosperm protein genes in common wheat. Can J Genet Cytol 26:651–656Google Scholar
  13. Goodman MM (1990) Genetic and germplasm stocks worth conserving. J Hered 81:11–16PubMedGoogle Scholar
  14. Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  15. Hu G, Housron NL, Pathak D, Schmidt L, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115PubMedCrossRefPubMedCentralGoogle Scholar
  16. Jadhav DR, Mallikarjuna N, Sharma HC, Saxena KB (2012a) Introgression of Helicoverpa armigera resistance from Cajanus acutifolius-a wild relative from secondary gene pool of pigeonpea (Cajanus cajan). Asian J Agric Sci 4(4):242–248Google Scholar
  17. Jadhav DR, Mallikarjuna N, Rathore A, Pokle D (2012b) Effect of some flavonoids on survival and development of Helicoverpa armigera (Hübner) and Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Asian J Agric Sci 4(4):298–307Google Scholar
  18. Kannaiyan J, Nene YL, Reddy MV, Ryan JG, Raju TN (1984) Prevalence of pigeonpea disease and associated crop losses in Asia, Africa and America. Trop Pest Manag 30:62–71CrossRefGoogle Scholar
  19. Kassa MT, Penmetsa RV, Carrasquilla-Garcia N, Sarma BK, Datta S, Upadhyaya HD, Varshney RV, von Wettberg EJB, Douglas RC (2012) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L.) Millsp.), and wild Cajanus relatives. PLoS ONE 7:e39563. doi: 10.1371/journal.pone.0039563 PubMedCrossRefPubMedCentralGoogle Scholar
  20. Kumar SP (1985) Crossability, genome relationships and inheritance studies in intergeneric hybrids of pigeonpea. Ph.D. thesis, University of Hyderabad, HyderabadGoogle Scholar
  21. Kumar S, Gupta S, Chandra S, Singh BB (2003) How wide is the genetic base of pulse crops? In: Ali M, Singh BB, Kumar S, Dhar V (eds) Pulses in new perspectives. Proceedings of the national symposium on crop diversification and natural resource management, Indian Institute of Pulses Research, Kanpur, UP, India, pp 211–221Google Scholar
  22. Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39(2):191–199CrossRefGoogle Scholar
  23. Levy AA, Galili G, Feldman M (1988) Polymorphism and genetic control of high molecular weight glutenin subunit in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity 61:63–72CrossRefGoogle Scholar
  24. Mallikarjuna N (1998) Ovule culture to rescue aborting embryos from pigeonpea (Cajanus Cajan L. Millspaugh) wide crosses. Indian J Exp Biol 36:225–228Google Scholar
  25. Mallikarjuna N, Saxena KB (2002) Production of hybrids between Cajanus acutifolius and C. cajan. Euphytica 124(1):107–110CrossRefGoogle Scholar
  26. Mallikarjuna N, Saxena KB (2005) A new cytoplasmic male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142(1–2):143–148CrossRefGoogle Scholar
  27. Mallikarjuna N, Sharma HC, Upadhyaya HD (2007) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. SAT eJournal | ejournalicrisatorg 3(1):4–7Google Scholar
  28. Mallikarjuna N, Saxena KB, Jadhav DR (2011a) Cajanus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 21–33CrossRefGoogle Scholar
  29. Mallikarjuna N, Senthivel S, Jadhav DR, Saxena KB, Sharma HC, Upadhyaya HD, Rathore A, Varshney RK (2011b) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130(5):507–514CrossRefGoogle Scholar
  30. Mallikarjuna N, Saxena KB, Lakshmi J, Varshney RK, Srikanth S, Jadhav DR (2012a) Differences between Cajanus cajan (L.) Millspaugh and C. cajanifolius (Haines) van der Maesen, the progenitor species of pigeonpea. Genet Resour Crop Evol 59:411–417CrossRefGoogle Scholar
  31. Mallikarjuna N, Jadhav DR, Saxena KB, Srivastava RK (2012b) Cytoplasmic male sterile systems in pigeonpea with special reference to A7 CMS. Electron J Plant Breed 3(4):983–986Google Scholar
  32. Marley PS, Hillocks RJ (1996) Effect of root-knot nematodes (Meloidogyne spp.) on Fusarium wilt in pigeonpea (Cajanus cajan (L.) Millspaugh). Field Crop Res 46:15–20CrossRefGoogle Scholar
  33. Mula MG, Saxena KB (2010) Lifting the level of awareness on pigeonpea – a global perspective. Research report. International Crops Research Institute for the Semi-Arid Tropics, PatancheruGoogle Scholar
  34. Murthy KSR, Emmannuel S (2011) Nutritional AND anti-nutritional properties of the unexploited wild legume Rhynchosia bracteata benth. Bangladesh J Sci Ind Res 46:141–146CrossRefGoogle Scholar
  35. Odeny DA, Jayashree B, Ferguson M, Hoisington D, Cry LJ, Gebhardt C (2007) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126:130–136CrossRefGoogle Scholar
  36. Oke DB, Tewe OO, Fetuga BL (1995) The nutrient composition of some cowpea varieties. Niger J Anim Prod 22:32–36Google Scholar
  37. Peng J, Korol AB, Fahima T, Rodert MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference and putative quasi-linkage. Genome Res 10:1509–1531PubMedCrossRefPubMedCentralGoogle Scholar
  38. Pumphrey M, Bai J, Laudencia-Chingcuanco D, Gill BS (2009) Non-additive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157PubMedCrossRefPubMedCentralGoogle Scholar
  39. Pundir RPS, Singh RB (1985) Crossability relationships among Cajanus, Atylosia and Rhynchosia species and detection of crossing barriers. Euphytica 34:303–308CrossRefGoogle Scholar
  40. Punguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2007) AFLP finger printing in pigeonpea (Cajanus cajan (L.) Mill sp) and its wild relatives. Genet Resour Crop Evol 53:423–431Google Scholar
  41. Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18. doi: 10.1186/1741-7007-18 PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ratnaparkhe MB, Gupta VS (2007) Pigeonpea. In: Kole C (ed) Genome mapping and molecular breeding in plants: pulses, sugar and tuber crops. Springer, Berlin, pp 133–142Google Scholar
  43. Saxena KB (2000) Pigeonpea. In: Gupta SK (ed) Plant breeding – theory and techniques. Agrobios, Jodhpur, pp 82–112Google Scholar
  44. Saxena KB (2008) Genetic improvement of pigeonpea–a review. Trop Plant Biol 1:159–178CrossRefGoogle Scholar
  45. Saxena KB, Faris DG, Kumar RV (1987) Relationship between seed size and protein content in newly developed high protein lines of pigeonpea. Plant Food Hum Nutr 36:335–340CrossRefGoogle Scholar
  46. Saxena KB, Ariyanayagam RP, Reddy LJ (1992) Genetics of a high-selfing trait in pigeonpea. Euphytica 59:125–127CrossRefGoogle Scholar
  47. Saxena KB, Ravikoti VK, Sultana R (2010) Quality nutrition through pigeonpea – a review. Health 2(11):1335–1344CrossRefGoogle Scholar
  48. Septiningsih E, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432PubMedCrossRefGoogle Scholar
  49. Singh NB, Singh IP, Singh BB (2005) Pigeonpea breeding. In: Ali M, Kumar S (eds) Advances in pigeonpea research. Indian Institute of Pulses Research, Kanpur, pp 67–95Google Scholar
  50. Srikanth S, Rao MV, Mallikarjuna N (2013) Interspecific hybridization between Cajanus cajan (L.) Millsp. and C. lanceolatus (WV Fitgz) van der Maesen. Plant Genet Resour: Charact Util. doi: 10.1017/S1479262113000361 Google Scholar
  51. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  52. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203PubMedCrossRefGoogle Scholar
  53. Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini core subset for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132CrossRefGoogle Scholar
  54. Upadhyaya HD, Reddy KN, Gowda CLL, Singh S (2007) Phenotypic diversity in the pigeonpea (Cajanus cajan) core collection. Genet Resour Crop Evol 54:1167–1184CrossRefGoogle Scholar
  55. Upadhyaya HD, Reddy KN, Singh S, Gowda CLL (2012) Phenotypic diversity in Cajanus species and identification of promising sources for agronomic traits and seed protein content. Genet Resour Crop Evol 60:639–659. doi: 10.1007/s10722-012-9864-0 CrossRefGoogle Scholar
  56. van der Maesen LJG (1980) India is the native home of pigeonpea. In: Arends JC, Boelema G, de Groot CT, Leeuwenberg AJM (eds) Ibergratulatorius in honorem H. C.D. de Wit landbouwhogeschool Miscellaneous paper no 19. Veenman H, Zonen BV, Wageningen, pp 257–262Google Scholar
  57. van der Maesen LJG (1986) Cajanus DC and Alylosia W. &. A. (Leguminosae). Agricultural University Wageningen papers 85-4 (1985). Agricultural University Wageningen, the Netherlands, p 222Google Scholar
  58. van der Maeson LJG (1995) Pigeonpea Cajanus cajan. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, Essex, pp 251–255Google Scholar
  59. van der Maesen LJG (2006) Cajanus cajan (L.) Mill sp. In: Brink M, Belay G (eds) Plant resources of Africa 1. Cereals and pulses. Backhuys Publishers, WageningenGoogle Scholar
  60. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012a) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89CrossRefGoogle Scholar
  61. Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Murali Mohan S, Mallikarjuna N, Upadhyaya HD, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S (2012b) Advances in genomics research and molecular breeding applications in SAT legume crops by using next generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820PubMedCrossRefGoogle Scholar
  62. Wang J, Tian L, Lee HS, Chen ZJ (2006a) Non-additive regulation of FRI and FLC loci mediates flowering time variation in Arabidiopsis allopolyploids. Genetics 173:965–974PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wang J, Tian L, Lee HS et al (2006b) Genome wide non-additive gene regulation in Arabidiopsis allotetraploids. Genetics 172:507–517PubMedCrossRefPubMedCentralGoogle Scholar
  64. Wright B (1997) Crop genetic resource policy: the role of ex situ gene banks. Aust J Agric Resour Econ 41:87–115CrossRefGoogle Scholar
  65. Yang S, Pang W, Ash G, Harper J, Carling J, Wenzel P, Hutter E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Grain Legumes ProgramInternational Crops Research Institute for Semi Arid Tropics (ICRISAT)PatancheruIndia

Personalised recommendations