Skip to main content

Abstract

Among the cool season legume crops, lentil production has displayed the greatest increase, while cropping of many other grain legumes is actually in decline. This increase is most likely due to a convenient fast cooking coupled to a saving of fuel and time – dehulled lentils cook even faster than milled rice. Worldwide lentil consumption has augmented more than twice the rate of human population growth, with lentil consumption over the past 40 years having increased more than any other food crop. Therefore, continued genetic improvement of lentil is essential in all production regions; nevertheless, without access to and use of diverse germplasm, prospects for yield genetic gain in lentil may be difficult to accomplish. Wild Lens accessions represent less than 1 % of the world germplasm collection of this genus, this small fraction likely representing the greatest untapped pool of genetic variation in lentil. Germplasm evaluation together with a successful and targeted hybridization allows for an efficient breeding and selection of varieties adapted to specific environments. The aim of the present chapter is to describe the evolutionary aspects of lentil and assess the gene pool and flow for crop improvement, considering levels of diversity and agronomic traits of importance, with emphasis placed on wild species and interspecific Lens hybridization, to finally conclude with molecular aspects and future prospects of lentil breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Ladizinsky G (1991) Anatomical aspects of hybrid embryo abortion in the genus Lens L. Bot Gaz 152:316–320

    Google Scholar 

  • Abbo S, Ladizinsky G (1994) Genetical aspects of hybrid embryo abortion in the genus Lens L. Heredity 72:193–200

    Google Scholar 

  • Abbo S, Ladizinsky G, Weeden NF (1991) Genetic analysis and linkage study of seed weight in lentil. Euphytica 58:259–266

    Google Scholar 

  • Ahmad M, Fautrier AG, McNeil DL, Burritt DJ, Hill GD (1995) Attempts to overcome postfertilization barrier in interspecific crosses of the genus Lens. Plant Breed 114:558–560

    Google Scholar 

  • Ahmad M, Russell AC, McNeil DL (1997) Identification and genetic characterization of different resistance sources to Ascochyta blight within the genus Lens. Euphytica 97:311–315

    Google Scholar 

  • Ali JAF, Shaikh NA (2007) Genetic exploitation of lentil through induced mutations. Pak J Bot 39:2379–2388

    Google Scholar 

  • Ali A, Johnson DL, Stushnoff C (1999) Screening lentil (Lens culinaris) for cold hardiness under controlled conditions. J Agric Sci 133:313–319

    Google Scholar 

  • Armstrong-Cho CL, Banniza S (2006) Glomerella truncata sp. nov, the teleomorph of Colletotrichum truncatum. Mycol Res 110:951–956

    PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    CAS  Google Scholar 

  • Ashraf M, Chishti SN (1993) Waterlogging tolerance of some accessions of lentil (Lens culinaris Medik.). Trop Agric 70:60–67

    Google Scholar 

  • Ashraf M, Zafar ZU (1997) Effect of potassium on growth and some biochemical characteristics in two lines of lentil (Lens culinaris Medik.). Acta Physiol Plant 19:9–15

    CAS  Google Scholar 

  • Attanayake RN, Glawe DA, Dugan FM, Chen W (2009) Erysiphe trifolii causing powdery mildew of lentil (Lens culinaris). Plant Dis 93:797–803

    Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet M, Petit A, Rameau C, Lejeune-Henaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    PubMed  CAS  Google Scholar 

  • Babayeva S, Akparov Z, Abbasov M, Mammadov A, Zaifizadeh M, Street K (2009) Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting. Genet Resour Crop Evol 56:293–298

    CAS  Google Scholar 

  • Balyan HS, Houben A, Ahne R (2002) Karyotype analysis and physical mapping of 18S–5.8S–25S and a 5S ribosomal RNA loci in species of genus Lens Miller (Fabaceae). Caryologia 55:121–128

    Google Scholar 

  • Barrios A (2012) Adaptación a la siembra invernal y tolerancia al frío en lenteja (Lens culinaris Medik.) mapeo de QTLs involucrados. Ph.D. Dissertation, Universidad de León. http://hdl.handle.net/10612/276

  • Barrios A, Kahraman A, Aparicio T, Rodríguez M, Mosquera P, García P, McPhee K, Pérez de la Vega M, Caminero C (2007) Preliminary identification of QTLS for winter hardiness, frost tolerance and other agronomic characters in lentil (Lens culinaris Medik.) for Castilla y León (SPAIN) region. In: Proceedings of the 6th European conference on gain legumes, Lisbon, 12–16 Nov 2007

    Google Scholar 

  • Barrios A, Martin-Sanz A, Ramos S, Rotter B, Horres R, Plotner A, Kretzdorn N, Constantino Saldaña C, Perez de la Vega M, Winter P (2010) Allele-specific differential expression of transcripts potentially involved in cold tolerance QTL in lentil revealed by bulked extremes SuperTag digital gene expression (BE-STDGE) profiling and qRT-PCR. In: Proceedings of the 5th international food legumes research conference & 7th European conference on grain legumes, Antalya, 26–30 Apr 2010

    Google Scholar 

  • Barulina H (1930) Lentils of the USSR and other countries. Bull Appl Bot Genet Plant Breed 40:265–304. (in Russian with English summary)

    Google Scholar 

  • Bashir M, Azeem T, Ali A, Ijaz M (2005) Variation in lentil germplasm for reaction to virus infection. Pak J Bot 37:53–60

    Google Scholar 

  • Bayaa B, Erskine W, Hamdi A (1994) Response of wild lentil to Ascochyta fabae f. sp. lentis from Syria. Genet Resour Crop Evol 41:61–65

    Google Scholar 

  • Bayaa B, Erskine W, Singh M (1997) Screening lentil for resistance to fusarium wilt: methodology and sources of resistance. Euphytica 98:69–74

    Google Scholar 

  • Bennet MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 274:227–274

    Google Scholar 

  • Bhadauria V, Bett KE, Zhou T, Vandenberg A, Wei Y, Banniza S (2013) Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC Genet 14:31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bhalla S, Kapur ML, Singh C, Gupta K, Kumar N, Lal B (2004) Interception of bruchids in imported lentil (Lens spp) germplasm. Indian J Agric Sci 74:332–333

    Google Scholar 

  • Buchwaldt L, Anderson KL, Morrall RAA, Gossen BD, Bernier CC (2004) Identification of lentil germplasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94:236–243

    PubMed  CAS  Google Scholar 

  • Buchwaldt L, Rubeena S, Adam J, Tullu A, Slinkard AE (2013) Recessive and dominant genes confer resistance to Colletotrichum truncatum in cultivated lentil. Can J Plant Pathol 35:222–231

    CAS  Google Scholar 

  • Chauhan MP, Singh IS (1995) Inheritance of protein content in lentil (Lens culinaris Medik.). Legum Res 18:5–8

    Google Scholar 

  • Chen CC, Miller P, Muehlbauer F, Neill K, Wichman D, McPhee K (2006) Winter pea and lentil response to seeding date and micro- and macro-environments. Agron J 98:1655–1663

    Google Scholar 

  • Cherif M, Chilvers MI, Akamatsu H, Peever TL, Kaiser WJ (2006) Cloning of the mating type locus from Ascochyta lentis (teleomorph: Didymella lentis) and development of a multiplex PCR mating assay for Ascochyta species. Curr Genet 50:203–215

    PubMed  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chowdhury MA, Andrahennadi CP, Slinkard AE, Vandenberg A (2001) RAPD and SCAR markers for resistance to Ascochyta blight in lentil. Euphytica 118:331–337

    CAS  Google Scholar 

  • Cohen D, Ladizinsky G, Ziv M, Muehlbauer FJ (1984) Rescue of interspecific Lens hybrids by means of embryo culture. Plant Cell Tissue Org Cult 3:343–347

    CAS  Google Scholar 

  • Coutts BA, Prince RT, Jones RAC (2008) Further studies on Pea seed-borne mosaic virus in cool-season crop legumes: responses to infection and seed quality defects. Aust J Agric Res 59:1130–1145

    Google Scholar 

  • Coyne CJ, McGee RJ, Redden R (2011) Lentil germplasm: a basis for improvement. Grain Legum 57:11–12

    Google Scholar 

  • Cubero JI, Pérez de la Vega M, Fratini R (2009) Origin, phylogeny, domestication and spread. In: Erskine W, Muehlbauer F, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Davidson JA, Kimber RBE (2007) Integrated disease management of ascochyta blight in pulse crops. Eur J Plant Pathol 119:99–110

    Google Scholar 

  • Davis PA, Lülsdorf MM, Ahmad M (2007) Wild relatives and biotechnological approaches. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht

    Google Scholar 

  • de la Puente R (2012) Mapa genético y análisis de secuencias nucleotídicas de interés en Lens. Ph.D. Dissertation, Universidad de León. http://hdl.handle.net/10612/2328

  • de la Puente R, García P, Polanco C, Pérez de la Vega M (2013) Short communication. An improved intersubspecific genetic map in Lens including functional markers. Span J Agric Res 11:132–136

    Google Scholar 

  • Dixit P, Dubey DK (1986) Alkylating agent induced chromosomal aberrations in lentil (Lens culinaris Med. Var T 36). Cytologia 51:325–331

    CAS  Google Scholar 

  • Durán Y, Pérez de la Vega M (2004) Assessment of genetic variation and species relationships in a collection of Lens using RAPD and ISSR. Span J Agric Res 4:538–544

    Google Scholar 

  • El-Bouhssini M, Sarker A, Erskine W, Joubi A (2008) First sources of resistance to Sitona weevil (Sitona crinitus Herbst) in wild Lens species. Genet Resour Crop Evol 55:1–4

    Google Scholar 

  • Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9:380

    PubMed  PubMed Central  Google Scholar 

  • Emami MK, Sharma B (1999) Linkage between three morphological markers in lentil. Plant Breed 118:579–581

    Google Scholar 

  • Erskine W (1985) Selection for pod retention and pod indehiscence in lentils. Euphytica 34:105–112

    Google Scholar 

  • Erskine W (1996) Seed-size effects on lentil (Lens culinaris) yield potential and adaptation to temperature and rainfall in West Asia. J Agri Sci 126:335–341

    Google Scholar 

  • Erskine W (2009) Global production, supply and demand. In: Erskine W, Muehlbauer F, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Erskine W, Adham Y, Holly L (1989) Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica 43:97–103

    Google Scholar 

  • Erskine W, Ellis RH, Summerfield RJ, Roberts EH, Hussain A (1990) Characterization of responses to temperature and photoperiod for time to flowering in a world lentil collection. Theor Appl Genet 80:193–199

    PubMed  CAS  Google Scholar 

  • Erskine W, Tufail M, Russell A, Tyagi MC, Rahman MM, Saxena MC (1994) Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 73:127–135

    Google Scholar 

  • Erskine W, Chandra S, Chaudary M, Malik IA, Sarker A, Sharma B, Tufail M, Tyagi MC (1998) A bottleneck in lentil: widening the genetic base in South Asia. Euphytica 101:207–211

    Google Scholar 

  • Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998a) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89

    CAS  Google Scholar 

  • Eujayl I, Erskine W, Bayaa B, Baum M, Pehu E (1998b) Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breed 117:497–499

    Google Scholar 

  • Eujayl I, Erskine W, Baum M, Pehu E (1999) Inheritance and linkage analysis of frost injury in a lentil population of recombinant inbred lines. Crop Sci 39:639–642

    Google Scholar 

  • FAOSTAT (2007) FAOSTAT statistical database of the United Nations Food and Agriculture Organization (FAO), Rome. Available at: http://faostat.fao.org/site

  • Ferguson ME, Ford-Lloyd BV, Robertson LD, Maxted N, Newbury HJ (1998a) Mapping the geographical distribution of genetic variation in the genus Lens for the enhanced conservation of plant genetic diversity. Mol Ecol 7:1743–1755

    Google Scholar 

  • Ferguson ME, Newbury HJ, Maxted N, Ford-Lloyd BV, Robertson LD (1998b) Population genetic structure in Lens taxa revealed by isozyme and RAPD analysis. Genet Resour Crop Evol 45:549–559

    Google Scholar 

  • Ferguson ME, Robertson LD, Ford-Lloyd BV, Newbury HJ, Maxted N (1998c) Contrasting genetic variation amongst lentil landraces from different geographical origins. Euphytica 102:265–273

    CAS  Google Scholar 

  • Ferguson ME, Maxted N, Van Slageren M, Robertson LD (2000) A reassessment of the taxonomy of Lens Miller (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41–59

    Google Scholar 

  • Fernández M, Ruiz ML, Linares C, Fominaya A, Pérez de la Vega M (2005) 5S rDNA genome regions of Lens species. Genome 48:937–942

    PubMed  Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Pérez-de-Luque A, Rubiales D (2007) Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48:85–94

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2009) Resistance to broomrape in wild lentils (Lens spp.). Plant Breed 128:266–270

    Google Scholar 

  • Fiala JV, Tullu A, Banniza S, Séguin-Swartz G, Vandenberg A (2009) Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medik.). Crop Sci 49:825–830

    Google Scholar 

  • Fikru E, Sarker A, Fikre A, Ahmed A, Ali K, Erskine W (2007) Registration of Assano lentil. J Plant Regist 1:41

    Google Scholar 

  • Fiocchetti F, Laddomada B, Roselli M, Crino P, Lucretti S (2009) Fingerprinting of three typical macrosperma Italian lentil (Lens culinaris Medik.) landraces using fluorescence-based AFLP markers. Sci Hortic 121:383–387

    CAS  Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1997) Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96:247–255

    CAS  Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to Ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98:93–98

    CAS  Google Scholar 

  • Ford R, Mustafa B, Inder P, Rubeena S, Materne M, Taylor P (2007) Lensomics: advances in genomics and molecular techniques for lentil breeding and management. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht

    Google Scholar 

  • Ford R, Mustafa B, Baum M, Rajesh PN (2009) Advances in molecular research. In: Erskine W, Muehlbauer F, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Fratini R, Ruiz ML (2003) A rooting procedure for lentil (Lens culinaris Medik.) and other hypogeous legumes (pea, chickpea and Lathyrus) based on explant polarity. Plant Cell Rep 21:726–732

    PubMed  CAS  Google Scholar 

  • Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280

    CAS  Google Scholar 

  • Fratini R, Ruiz ML (2008) Micropropagation of intra and interspecific Lens hybrids. Euphytica 159:199–206

    Google Scholar 

  • Fratini R, Ruiz ML (2011) Wide crossing in lentil through embryo rescue. In: Thorpe TAA, Yeung ECC (eds) Plant embryo culture: methods and protocols. Methods in molecular biology series, vol 710, Walker J (ed). Humana Press, New York

    Google Scholar 

  • Fratini R, Ruiz ML, Pérez de la Vega M (2004) Intra-specific and inter-subspecific crossing in lentil (Lens culinaris Medik.). Can J Plant Sci 84:981–986

    Google Scholar 

  • Fratini R, Durán Y, García P, Pérez de la Vega M (2007) Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Span J Agric Res 5:348–356

    Google Scholar 

  • Fratini R, Pérez de la Vega M, Cubero JI (2011) Lentil origin and domestication. Grain Legum 57:5–9

    Google Scholar 

  • Furman BJ, Coyne C, Redden B, Sharma SK, Vishnyakova M (2009) Genetic resources: collection, characterization, conservation and documentation. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Galasso I (2003) Distribution of highly repeated DNA sequences in species of the genus Lens Miller. Genome 46:1118–1124

    PubMed  CAS  Google Scholar 

  • Galloway J, MacLeod WJ, Lindbeck KD (2004) Formation of Didymella lentis, the teleomorph of Ascochyta lentis, on lentil stubble in the field in Victoria and Western Australia. Australas Plant Pathol 33:449–450

    Google Scholar 

  • Gill AS, Malhotra RS (1980) Inheritance of flower color and flower number per inflorescence in lentils. Lens Newsl 7:15–19

    Google Scholar 

  • Grunwald NJ, Hoheisel GA (2006) Hierarchical analysis of diversity, selfing, and genetic differentiation in populations of the oomycete Aphanomyces euteiches. Phytopathology 96:1134–1141

    PubMed  CAS  Google Scholar 

  • Gupta D, Sharma SK (2005) Embryo ovule rescue – in vitro technique for overcoming post fertilization barriers in Lens. J Lentil Res 2:27–30

    Google Scholar 

  • Gupta D, Sharma SK (2006) Evaluation of wild Lens taxa for agro-morphological traits, fungal diseases and moisture stress in North Western Indian hills. Genet Resour Crop Evol 53:1233–1241

    Google Scholar 

  • Haddad N, Muehlbauer FJ, Hampton RO (1978) Inheritance of resistance to pea seed-borne mosaic virus in lentils. Crop Sci 18:613–615

    Google Scholar 

  • Haddad NI, Bogyo TP, Muehlbauer FJ (1982) Genetic variance of six quantitative characters in three lentil (Lens culinaris Medik.) crosses. Euphytica 31:113–120

    Google Scholar 

  • Hamdi A, Erskine W, Gates P (1991) Relationship among economic characters in lentil. Euphytica 57:109–116

    Google Scholar 

  • Hamdi A, Küsmenoglu I, Erskine W (1996) Sources of winter hardiness in wild lentil. Genet Resour Crop Evol 43:63–67

    Google Scholar 

  • Hamwieh A, Udapa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of lentil based on microsatellite and AFLP markers and localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    PubMed  CAS  Google Scholar 

  • Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86

    CAS  Google Scholar 

  • Harlan JR (1992) Crops and man. American Society of Agronomy, Madison

    Google Scholar 

  • Harlan JR, de Wet JMJ (1977) Pathways of genetic transfer from Tripsacum to Zea Mays. Proc Natl Acad Sci U S A 74:3494–3497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77:395–401

    PubMed  CAS  Google Scholar 

  • Hernández-Bello MA, Chilvers MI, Akamatsu H, Peever TL (2006) Host specificity of Ascochyta spp. infecting legumes of the Viciae and Cicerae tribes and pathogenicity of an interspecific hybrid. Phytopathology 96:1148–1156

    PubMed  Google Scholar 

  • Hobson K, Armstrong R, Nicolas M, Connor D, Materne M (2006) Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica 151:371–382

    CAS  Google Scholar 

  • Hoffman DL, Soltis DE, Muehlbauer FJ, Ladizinsky G (1986) Isozyme polymorphism in Lens (Leguminosae). Syst Bot 11:392–402

    Google Scholar 

  • Horneburg B (2006) Outcrossing in lentil (Lens culinaris) depends on cultivar, location and year, and varies within cultivars. Plant Breed 125:638–640

    Google Scholar 

  • Hussain S, Ali A, Zahid MA, Iqbal SM (2008) Multiple disease resistance in lentil germplasm from Pakistan. Pak J Bot 40:897–903

    Google Scholar 

  • Inder P, Materne M, Taylor PWJ, Ford R (2008) Genotyping elite genotypes within the Australian lentil breeding program with lentil-specific sequenced tagged microsatellite site (STMS) markers. Aust J Agric Res 59:222–225

    CAS  Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221

    Google Scholar 

  • Jansen RK, Wojciechowski MF, Sanniyasi E, Lee S-B, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N, Aydogun A, Erskine W, Muehlbauer FJ (2004a) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44:5–12

    Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004b) QTL mapping of winter hardiness genes in lentil. Crop Sci 44:13–22

    CAS  Google Scholar 

  • Kalo P, Seres A, Taylor S, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis T, Kiss G (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246

    PubMed  CAS  Google Scholar 

  • Kamboj RK, Pandey MP, Chaube HS (1990) Inheritance of resistance to Fusarium wilt in India lentil germplasm. Euphytica 50:113–117

    Google Scholar 

  • Kaur S, Pembleton L, Cogan N, Hobson K, Leonforte T, Paull J, Forster J, Materne M (2010) Transcriptome sequencing from cool season food legumes (lentil, chickpea, pea and faba bean) using 454 GS-FLX Titanium technology. In: Proceedings of the 5th international food legumes research conference & 7th European conference on grain legumes, Antalya, 26–30 Apr

    Google Scholar 

  • Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265

    PubMed  CAS  PubMed Central  Google Scholar 

  • Keim P, Diers BW, Shoemaker RC (1990) Genetic analysis of soybean hard seededness with molecular markers. Theor Appl Genet 79:465–469

    PubMed  CAS  Google Scholar 

  • Kumar A, Singh DP (1998) Hybridization technique in lentil under field conditions. Lens Newsl 25:1–3

    Google Scholar 

  • Kumar Y, Mishra SK, Tyagi MC, Singh SP, Sharma B (2005) Linkage between genes for leaf colour, plant pubescence, number of leaflets and plant height in lentil (Lens culinaris Medik.). Euphytica 145:41–48

    Google Scholar 

  • Ladizinsky G (1979) The origin of lentil and its wild gene pool. Euphytica 28:179–187

    Google Scholar 

  • Ladizinsky G (1985) The genetics of hard seed coat in the genus Lens. Euphytica 34: 539–543

    Google Scholar 

  • Ladizinsky G (1992) Crossability relations. In: Kalloo G, Chowdhury JB (eds) Distant hybridization of crop plants, Monographs on theoretical and applied genetics, 16. Springer, Dordrecht

    Google Scholar 

  • Ladizinsky G (1993) Wild lentils. Crit Rev Plant Sci 12:169–184

    Google Scholar 

  • Ladizinsky G (1997) A new species of Lens from south-east Turkey. Bot J Linn Soc 123:257–260

    Google Scholar 

  • Ladizinsky G (1999) Identification of the lentil wild genetic stock. Genet Resour Crop Evol 46:115–118

    Google Scholar 

  • Ladizinsky G, Abbo S (1993) Cryptic speciation in Lens culinaris. Genet Resour Crop Evol 40:1–5

    Google Scholar 

  • Ladizinsky G, Braun D, Goshen D, Muehlbauer FJ (1984) The biological species of the genus Lens. Bot Gaz 145:253–261

    Google Scholar 

  • Ladizinsky G, Cohen D, Muehlbauer FJ (1985) Hybridization in the genus Lens by means of embryo culture. Theor Appl Genet 70:97–101

    PubMed  CAS  Google Scholar 

  • Ladizinsky G, Weeden NF, Muehlbauer FJ (1990) Tertiary trisomic in lentil. Euphytica 51:179–184

    Google Scholar 

  • Laserna-Ruiz I, De-Los-Mozos-Pascual M, Santana-Méridas O, Sánchez-Vioque R, Rodríguez-Conde MF (2012) Screening and selection of lentil (Lens Miller) germplasm resistant to seed bruchids (Bruchus spp.). Euphytica 188:153–162

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lazaridou TB, Roupakias DG, Economou AS (1993) Embryo rescue in Vicia faba and Vicia narbonensis. Plant Cell Tissue Org Cult 33:297–301

    Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603

    PubMed  CAS  Google Scholar 

  • Malaviya DR, Shukla RS (1990) Crossability among macrosperma and microsperma varieties of Lens culinaris Medik. Indian J Genet 50:63–69

    Google Scholar 

  • Malhorta RS, Balyan HS, Gupta PK (1978) Crossing technique in lentils. Lens Newsl 5:7–8

    Google Scholar 

  • Mamo T, Richter C, Heiligtag B (1996) Salinity effects on the growth and ion contents of some chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.) varieties. J Agron Crop Sci 176:235–247

    CAS  Google Scholar 

  • McCoy TJ, Smith LY (1986) Interspecific hybridization of perennial Medicago species using ovule-embryo culture. Theor Appl Genet 71:772–783

    PubMed  CAS  Google Scholar 

  • Mejia-Jimenez A, Muñoz C, Jacobsen HJ, Roca WM, Singh SP (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency through recurrent and congruity backcrossing. Theor Appl Genet 88:324–331

    PubMed  CAS  Google Scholar 

  • Mera M, Erskine W (1982) Crossing techniques for lentil under field conditions. Lens Newsl 9:11–15

    Google Scholar 

  • Millan T (2013) Abstracts of oral and poster presentations given at the Ascochyta 2012 workshop, Phytopathologia Mediterranea 52, Córdoba, Spain, 22–26 Apr 2012. Available at: http://www.fupress.net/index.php/pm/article/view/12383

  • Miller PR, Brandt SA, McDonald CL, Waddington J (2006) Chickpea, lentil, and pea response to delayed spring seeding on the Northern Great Plains. Can J Plant Sci 86:1059–1070

    Google Scholar 

  • Muehlbauer FJ, Chen W (2007) Resistance to ascochyta blights of cool season food legumes. Eur J Plant Pathol 119:135–141

    Google Scholar 

  • Muehlbauer FJ, Slinkard AE, Wilson VE (1980) Lentil. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy and Crop Science Society of America, Madison

    Google Scholar 

  • Muehlbauer FJ, Weeden NF, Hoffman DL (1989) Inheritance and linkage relationships of morphological and isozyme loci in lentil (Lens Miller). J Hered 80:298–303

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Clement SL, Summerfield RJ (1995) Production and breeding of lentil. Adv Agron 54:283–332

    Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A, McPhee KE, Coyne CJ, Rajesh PN, Ford R (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Google Scholar 

  • Mustafa BM, Coram TE, Pang ECK, Taylor PWJ, Ford R (2009) A cDNA microarray approach to decipher lentil (Lens culinaris) responses to Ascochyta lentis. Aust Plant Pathol 38:617–631

    CAS  Google Scholar 

  • Negussie T, Pretorius ZA, Bender CM (2005) Components of rust resistance in lentil. Euphytica 142:55–64

    Google Scholar 

  • Nguen TT, Taylor PWJ, Brouwer JB, Peng ECK, Ford R (2001) A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to Ascochyta blight caused by Ascochyta lentis. Australas Plant Pathol 30:211–215

    Google Scholar 

  • Ocampo B, Conicella C, Moss JP (2000) Wide crossing: opportunities and progress. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century, vol 34, Current plant science and biotechnology in agriculture. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Peever TL (2007) Role of host specificity in the speciation of Ascochyta pathogens of cool season food legumes. Eur J Plant Pathol 119:119–126

    Google Scholar 

  • Penazola E, Tay J, France A (2007) Calpun-INIA, a large seed size and rust-resistant lentil (Lens culinaris Medik.) cultivar. Agri Téc 67:68–71

    Google Scholar 

  • Penmetsa RV, Carrasquilla-Garcia N, Rosen B, Gao J, Sarma BK et al. (2010) Studies of genome evolution in Papilionoid legumes. In: Proceedings of the 5th international food legumes research conference & 7th European conference on grain legumes, Antalya, 26–30 Apr

    Google Scholar 

  • Pérez de la Vega M, Fratini R, Muehlbauer FJ (2012) Lentil. In: Pérez de la Vega M, Torres AM, Cubero JI, Kole C (eds) Genetics, genomics and breeding of cool season grain legumes. CRC Press, Boca Raton

    Google Scholar 

  • Phan HTT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114:549–558

    PubMed  Google Scholar 

  • Pickersgill B (1993) Interspecific hybridization by sexual means. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapman & Hill, London

    Google Scholar 

  • Pinkas R, Zamir D, Ladizinsky G (1985) Allozyme divergence and evolution in the genus Lens. Plant Syst Evol 151:131–140

    Google Scholar 

  • Pitarelli GW, Stavely JR (1975) Direct hybridisation of Nicotiana rependa x N. tabacum. J Hered 66:281–284

    Google Scholar 

  • Rai R, Singh RP (1999) Effect of salt stress on interaction between lentil (Lens culinaris) genotypes and Rhizobium sp. Strains: symbiotic N-2 fixation in normal and sodic soils. Biol Fertil Soils 29:187–195

    CAS  Google Scholar 

  • Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2010) Cross-genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breed 129:514–518

    CAS  Google Scholar 

  • Riccioni L, Haegi A, Valvassori M (2008) First report of vascular wilt caused by Fusarium redolens on lentil in Italy. Plant Dis 92:1132

    Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    PubMed  CAS  Google Scholar 

  • Rolston MP (1978) Water impermeable seed dormancy. Bot Rev 44:365–396

    CAS  Google Scholar 

  • Rosa de la L, Jouve N (1992) Genetic variation for isozyme and proteins in Spanish primitive cultivars and wild species of Lens. Euphytica 59:181–187

    Google Scholar 

  • Rubeena S, Taylor PW, Ades PK, Ford R (2006) QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to Ascochyta blight (Ascochyta lentis). Plant Breed 125:506–512

    CAS  Google Scholar 

  • Saha GC, Muehlbauer FJ (2011) Lentil: an essential high protein food in South Asia. Grain Legum 57:49–51

    Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandenmark GJ, Muehlbauer FJ (2010) Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil. Crop Sci 50:1831–1839

    CAS  Google Scholar 

  • Salam MA, Islam MT (1994) Growth, yield and leaf-water attributes of some advanced mutant lentil lines under different moisture regimes. Lens Newsl 21:32–35

    Google Scholar 

  • Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Agric Sci 144:19–29

    Google Scholar 

  • Sarker A, Kumar S (2011) Lentils in production and food systems in West Asia and Africa. Grain Legum 57:46–48

    Google Scholar 

  • Sarker A, Erskine W, Sharma B, Tyagi MC (1999) Inheritance and linkage relationship of days to flower and morphological loci in lentil (Lens culinaris Medikus subsp. culinaris). J Hered 90:270–275

    Google Scholar 

  • Sarker A, Bayaa B, El Hassan H, Erskine W (2004) New sources of resistance to Fusaium wilt in lentil (Lens culinaris Medikus. ssp. culinaris). J Lentil Res 1:30–33

    Google Scholar 

  • Sarker A, Erskine W, Singh M (2005) Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genet Resour Crop Evol 52:87–95

    Google Scholar 

  • Scippa GS, Trupiano D, Rocco M, Viscosi V, Di Micheli M, D’Andrea A, Chiatante D (2008) An integrated approach to the characterization of two autochthonous lentil (Lens culinaris) landraces of Molise (south-central Italy). Heredity 101:136–144

    PubMed  CAS  Google Scholar 

  • Scippa GS, Rocco M, Ialicicco M, Trupiano D, Viscosi V, Di Michele M, Arena S, Chiatante D, Scaloni A (2010) The proteome of lentil (Lens culinaris Medik.) seeds: discriminating between landraces. Electrophoresis 31:497–506

    PubMed  CAS  Google Scholar 

  • Sharma B (2009) Genetics of economic traits. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CABI, Wallingford

    Google Scholar 

  • Sharma B (2011) Genes for traits of economic importance in lentil. Grain Legum 57:15–17

    CAS  Google Scholar 

  • Sharma SK, Knox MR, Ellis THN (1996) AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theor Appl Genet 93:751–758

    PubMed  CAS  Google Scholar 

  • Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A, Bett KE (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192

    PubMed  PubMed Central  Google Scholar 

  • Siddique KHM, Loss SP, Pritchard DL, Regan KL, Tennant D, Jettner RL, Wilkinson D (1998) Adaptation of lentil (Lens culinaris Medik.) to Mediterranean-type environments: effect of time of sowing on growth, yield, and water use. Aust J Agric Res 49:613–626

    Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Patto MCV, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Google Scholar 

  • Singh RK, Raghuvanski SS, Prakash D (1992) Genetic improvement in advanced generations of colchitetraploid lentil (Lens culinaris Medikus). J Genet Breed 46:151–154

    CAS  Google Scholar 

  • Singh D, Dikshit HK, Singh R (2013a) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed 132:185–190

    Google Scholar 

  • Singh M, Rana MK, Kumar K, Bisht IS, Dutta M, Gautam NK, Sarker A, Bansal KC (2013b) Broadening the genetic base of lentil cultivars through inter-subspecific and interspecific crosses of Lens taxa. Plant Breed 132:667–675

    CAS  Google Scholar 

  • Skibinski DOF, Warren ME (1984) Variation at soluble enzyme loci in four Lens species. Lens Newsl 11:10–13

    Google Scholar 

  • Solaiman Z, Colmer TD, Loss SP, Thomson BD, Siddique KHM (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58:406–412

    Google Scholar 

  • Solh MB, Paredes OM, Tiwari AS (1980) Crossing technique in lentil under field conditions. Lens Newsl 7:9–14

    Google Scholar 

  • Sonnante G, Pignone D (2001) Assessment of genetic variation in a collection of lentil using molecular tools. Euphytica 120:301–307

    CAS  Google Scholar 

  • Sonnante G, Pignone D (2007) The major Italian landraces of lentil (Lens culinaris Medik.): their molecular diversity and possible origin. Genet Resour Crop Evol 54:1023–1031

    Google Scholar 

  • Sonnante G, Galasso I, Pignone D (2003) ITS sequence analysis and phylogenetic inference in the genus Lens Mill. Ann Bot 91:49–54

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1958) The inviability, weakness, and sterility of interspecific hybrids. Adv Genet 9:14–215

    Google Scholar 

  • Stevenson PC, Dhillon MK, Sharma HC, El-Bouhssini M (2007) Insect pest of lentil and their management. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht

    Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Google Scholar 

  • Tahir M, Muehlbauer FJ, Spaeth SC (1994) Association of isozyme markers with quantitative trait loci in random single seed descent derived lines of lentil (Lens culinaris Medik.). Euphytica 75:111–119

    Google Scholar 

  • Tar’an B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A (2003) Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134:223–230

    Google Scholar 

  • Tay J, Slinkard AE (1989) Transgressive segregation for Ascochyta resistance in lentil. Can J Plant Sci 69:547

    Google Scholar 

  • Taylor PWJ, Ford R (2007) Diagnostics, genetic diversity and pathogenic variation of ascochyta blight of cool season food and feed legumes. Eur J Plant Pathol 119:127–133

    Google Scholar 

  • Taylor P, Lindbeck K, Chen W, Ford R (2007) Lentil diseases. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht

    Google Scholar 

  • Thavarajah D, Thavarajah P (2011) Lentil (Lens culinaris) as a biofortified crop with essential micronutrients: a food-based solution to micronutrient malnutrition. Grain Legum 57:29–31

    Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen WD, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Google Scholar 

  • Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht

    Google Scholar 

  • Toklu F, Karakoy T, Hakli E, Bicer T, Brandolini A, Kilian B, Özkan H (2009) Genetic variation among lentil (Lens culinaris Medik.) landraces from Southeast Turkey. Plant Breed 128:178–186

    CAS  Google Scholar 

  • Tullu A, Buchwaldt L, Warketin T, Taran B, Vandenberg A (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106:428–434

    PubMed  CAS  Google Scholar 

  • Tullu A, Buchwaldt L, Lulsdorf M, Banniza S, Barlow B, Slinkard AE, Sarker A, Tar’an B, Warkentin T, Vandenberg A (2006) Sources of resistance to anthracnose (Colletotrichum truncatum) in wild Lens species. Genet Resour Crop Evol 53:111–119

    CAS  Google Scholar 

  • Tullu A, Tar’an B, Warkentin T, Vandenberg A (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264

    Google Scholar 

  • Tullu A, Banniza S, Bett K, Vandenberg A (2011) A walk on the wild side: exploiting wild species for improving cultivated lentil. Grain Legum 57:13–14

    Google Scholar 

  • Tyagi MC, Sharma B (1989) Transgressive segregation for early flowering through conventional breeding in lentil. Lens Newsl 16:3–6

    Google Scholar 

  • Tyagi MC, Sharma B (1995) Protein content in lentil (Lens culinaris Medik.). In: Sharma B, Kulshreshtha VP, Gupta N, Mishra SK (eds) Genetic research and education: current trends and the next fifty years. Indian Society of Genetics and Breeding, New Delhi

    Google Scholar 

  • Vail S, Vandenberg A (2010) Evaluation of a clonal propagation protocol to obtain replicated disease data on infection by Colletotrichum truncatum in Lens culinaris. Crop Sci 50:926–932

    Google Scholar 

  • Vaillancourt R, Slinkard AE (1992) Inheritance of new genetic markers in lentil. Euphytica 64:227–236

    Google Scholar 

  • van Oss H, Aron Y, Ladizinsky G (1997) Chloroplast DNA variation and evolution in the genus Lens Mill. Theor Appl Genet 94:452–457

    Google Scholar 

  • Vandenberg B (2011) Lentils – the little seeds with the big impact on human health. Grain Legum 57:25–26

    Google Scholar 

  • Vandenberg B, Slinkard AE (1989) Inheritance of four new quantitative genes in lentil. J Hered 80:320–322

    Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:202–210

    PubMed  Google Scholar 

  • Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol J 11:894–905. doi:10.1111/pbi.12082

    PubMed  CAS  Google Scholar 

  • Wang H, Chang KF, Hwang SF, Gossen BD, Turnbull GD, Howard RJ, Strelkov SE (2006) Response of lentil cultivars to rhizoctonia seedling diseases in Canada. J Plant Dis Prot 113:219–223

    Google Scholar 

  • Williams EG (1987) Interspecific hybridization in pasture legumes. In: Janick J (ed) AVI Publishing Co., Westport. Plant Breed Rev 5:237–305

    Google Scholar 

  • Wilson VE (1972) Morphology and technique for crossing Lens esculenta Moench. Crop Sci 12:231–232

    Google Scholar 

  • Wilson VE, Law AG (1972) Natural crossing in Lens esculenta Moench. J Am Soc Hortic Sci 97:142–143

    Google Scholar 

  • Wojciechowski MF (2006) IRLC (Inverted Repeat-lacking clade). Version 11 July 2006: http://tolweb.org/IRLC_%28Inverted_Repeat-lacking_clade%29/60358/2006.07.11. In: The tree of life web project, http://tolweb.org

  • Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000) Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In: Herendeen P, Bruneau A (eds) Advances in legume systematics, part 9. Royal Botanic Garden Kew, London, pp 277–298

    Google Scholar 

  • Ye G, McNeil DL, Hill GD (2002) Breeding for resistance to lentil Ascochyta blight. Plant Breed 121:185–191

    Google Scholar 

  • Yeung EC, Thorpe TA, Jensen CJ (1981) In vitro fertilization and embryo culture. In: Thorpe TA (ed) Plant tissue culture, methods and applications in agriculture. Academic, New York

    Google Scholar 

  • Yuzbasioglu E, Acik L, Ozcan S (2008) Seed protein diversity among lentil cultivars. Biol Plant 52:126–128

    CAS  Google Scholar 

  • Zamir D, Ladizinsky G (1984) Genetics of allozyme variants and linkage groups in lentil. Euphytica 33:329–336

    CAS  Google Scholar 

  • Závodná M, Kraic J, Paglia G, Gregova E, Morgante M (2000) Differentiation between closely related lentil (Lens culinaris Medik.) cultivars using DNA markers. Seed Sci Technol 28:217–219

    Google Scholar 

  • Zimniak-Przybylska Z, Przybylska J, Krajewski P (2001) Genetic resources, Lens, lentil, SDS-PAGE, seed globulins. J Appl Genet 42:435–447

    PubMed  CAS  Google Scholar 

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of crops on which agriculture founded in the Near East. Genet Resour Crop Evol 46:133–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Mario Fratini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Fratini, R.M., Pérez de la Vega, M., Ruiz Sánchez, M.L. (2014). Lentil. In: Singh, M., Bisht, I., Dutta, M. (eds) Broadening the Genetic Base of Grain Legumes. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2023-7_6

Download citation

Publish with us

Policies and ethics