Cowpea (Vigna unguiculata (L.) Walp.) is an important warm-season legume grown mostly by the poor farmers in the semiarid tropics for human consumption and animal feeding. The crop was originated from Africa where it was domesticated from its wild progenitor V. unguiculata subsp. unguiculata var spontanea. In addition, single nucleotide polymorphism markers (SNP) analysis suggested different domestication events from East to West Africa or single domestication process in the first region followed by transportation in the second. On the basis of molecular analyses, the genome organization of the crop was intensively studied, leading to the identification of two gene pools and gene flow between cultivated and wild forms or crop to crop can be a threat to the breeding programs. A wide range of biotic (virus, bacteria, fungi, insects, nematodes, and plants) and abiotic (like low phosphorus availability, soil acidity or salinity, drought, and high temperature at night) factors are limiting cowpea production in different parts of the world. To overcome these constraints, diverse programs were implemented for base broadening using interspecific hybridization between cowpea and other members of its genus with limited success because of pre-zygotic and post-zygotic barriers. These failures led the investigators to implement protocols to introduce foreign genes into cowpea. Currently, several genes of interest such as herbicide imazapyr, α-amylase inhibitor 1 (against bruchids), and Cry1Ab and Cry1Ac (against Maruca) have been introduced successfully into commercially important cultivars, and these genes are transmitted in Mendelian fashion. In addition, significant genomic resources and a consensus genetic map where agronomic, growth habit, disease, pest resistance, and other trait loci have been placed and are usable in breeding programs.


Interspecific Hybridization Cowpea Genotype Cowpea Variety Cowpea Accession Cowpea Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrol DP (1999) Pulse susceptibility to Callosobruchus chinensis (L) (Bruchidae: Coleoptera) under field conditions. Trop Agric 76:150Google Scholar
  2. Adesoye A, Machuka J, Togun A (2008) CRY 1AB transgenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–3210Google Scholar
  3. Akella V, Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep 12:110–117PubMedGoogle Scholar
  4. Andargie M, Pasquet RS, Muluvi GM, Timko MP (2013) Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata). Genome 56:289–294PubMedGoogle Scholar
  5. Anderson E (1949) Introgressive hybridization. Wiley, New YorkGoogle Scholar
  6. Asare AT, Gowda BS, Galyuon IKA, Aboagye LL et al (2010) Assessment of the genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] germplasm from Ghana using simple sequence repeat markers. Plant Genet Resour Charact Util 8:142–150Google Scholar
  7. Asiwe J (2009) Insect mediated out crossing and gene flow in cowpea (Vigna unguiculata (L.) Walp.): Implication for seed production and provision of containment structures for genetically transformed cowpea. Afr J Biotechnol 8:226–230Google Scholar
  8. Badiane FA, Diouf D, Sané D, Diouf O, Goudiaby V, Diallo N (2004) Screening cowpea [Vigna unguiculata (L.) Walp.] varieties by inducing water deficit and RAPD analyses. Afr J Biotechnol 3:174–178Google Scholar
  9. Badiane FA, Bhavani SG, Cissé N, Diouf D, Sadio O, Timko MP (2012) Genetic relationship of cowpea Vigna unguiculata varieties from Senegal based on SSR markers. Genet Mol Res 11(1):292–304PubMedGoogle Scholar
  10. Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292PubMedGoogle Scholar
  11. Barone A, Del Giudice A, Ng NQ (1992) Barriers to interspecific hybridization between Vigna unguiculata and Vigna vexillata. Sex Plant Reprod 5(3):195–200Google Scholar
  12. Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127PubMedPubMedCentralGoogle Scholar
  13. Ba-Sylla F, Pasquet RS, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resour Crop Evol 51:539–550Google Scholar
  14. Baudoin JP, Maréchal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 3–9Google Scholar
  15. Bharathi A, Vijay Selvaraj KS, Veerabadhiran P, Subba Lakshmi B (2006) Crossability barriers in mungbean (Vigna radiata L. Wilczek): with its wild relatives. Indian J Crop Sci 1(1–2):120–124Google Scholar
  16. Bisht IS, Bhat KV, Lakhanpaul S, Latha M, Jayan PK, Biswas BK, Singh AK (2005) Diversity and genetic resources of wild Vigna species in India. Genet Resour Crop Evol 52:53–68Google Scholar
  17. Boling M, Sander DA, Matlock RS (1961) Mungbean hybridization technique. Agron J 53:54–55Google Scholar
  18. Chen X, Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinform 8:129Google Scholar
  19. Cissé N, Wey J, Seck D, Gueye MT, Gueye M (2005) Les légumineuses à grains. In: ISRA, ITA, CIRAD (eds) Bilan de la recherche agricole et agroalimentaire au Sénégal. ISRA/CIRAD, Dakar/Paris, pp 257–266Google Scholar
  20. Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32:537–543PubMedGoogle Scholar
  21. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc Lond B 363:557–572Google Scholar
  22. Collins RO (2006) The African slave trade to Asia and the Indian Ocean Islands. Afr Asian Stud 5(3–4):325–346(22)Google Scholar
  23. Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. Reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366PubMedGoogle Scholar
  24. Craufurd PQ, Summerfield RJ, Ell RH, Roberts EH (1997) Photoperiod, temperature and the growth and development of cowpea (Vigna unguiculata). In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. Co-publication Int Inst Tropic Agric (IITA) and Japan Int Res Center Agric Sci (JIRCAS), Sayce, pp 75–86Google Scholar
  25. Dana S (1966a) Cross between Phaseolus attreus Roxb. and P. mtmgo L. Genetics 37:259–274Google Scholar
  26. Dana S (1966b) Cross between Phase ~ dus aureus Roxb. and P. ricwardianus. Ten Genrt Ibrr 18:141–156Google Scholar
  27. Dana S (1966c) Species cross between Phaseolus aureus Roxb. and P. trilobus Ait. Cytologia 31:176–187Google Scholar
  28. Dana S, Karmakar PG (1990) Species relation in Vigna subgenus Ceratotropis and its implications in breeding. In: Janick J (ed) Plant breeding review. Timber Press, Portland, pp 19–42Google Scholar
  29. Dantas BF, De Sáribeiro L, Aragão CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Bras Sementes 27(1):144–148Google Scholar
  30. Diouf D (2011) Recent advances in cowpea [Vigna unguiculata (L.) Walp.] “omics” research for genetic improvement. Afr J Biotechnol 10(15):2803–2810Google Scholar
  31. Diouf D, Hilu KW (2005) Microsatellites and RAPD markers to study genetic relationship among cowpea breeding lines and local varieties in Senegal. Genet Resour Crop Evol 52:1057–1067Google Scholar
  32. Doebley J, Stec A, Wendel J et al (1990) Genetic and morphological analysis of maize-teosinte F2 population: implications for the origin of maize. PNAS 87(24):9888–9892PubMedPubMedCentralGoogle Scholar
  33. Doi K, Kaga A, Tomooka N, Vaughan DA (2002) Molecular phylogeny of genus Vigna subgenus Ceratotropis based on rDNA ITS and atpB-rbcL intergenic spacer of cpDNA sequences. Genetica 114:129–145PubMedGoogle Scholar
  34. Dumet D, Fatokun C (2010) Global strategy for the conservation of cowpea (Vigna unguiculata ssp. unguiculata). World cowpea conference, September, Saly, SenegalGoogle Scholar
  35. Echikh N (2000) Organisation du pool génique de formes sauvages et cultivées d’une légumineuse alimentaire, Vigna unguiculata (L.) Walp. Thèse de doctorat, Faculté universitaire des Sciences agronomiques, Gembloux, Belgique, p 307Google Scholar
  36. Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679Google Scholar
  37. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204Google Scholar
  38. Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res 55:11–21Google Scholar
  39. Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond B 358:1163–1170Google Scholar
  40. Fall L, Diouf D, Fall-Ndiaye MA, Badiane FA, Gueye M (2003) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] varieties determined by ARA and RAPD techniques. Afr J Biotechnol 2:48–50Google Scholar
  41. Fang J, Chao CCT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209Google Scholar
  42. Fatokun CA (1991) Wide hybridization in cowpea: problems and prospects. Euphytica 54:137–140Google Scholar
  43. Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and V. vexillata. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (ed) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III, held at the International Institute of Tropical Agriculture, IITA, Ibadan Nigeria, 4–8 2000. IITA, IbadanGoogle Scholar
  44. Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens and V. unquiculata (L.) Walp through embryo rescue. Plant Cell Tissue Organ Cult 9(3):229–233Google Scholar
  45. Fatokun CA, Danesh D, Menancio-Hautea D, Young ND (1993) A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 6.256–6.258Google Scholar
  46. Fatokun CA, Ousmane B, Satoru M (2012) Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to Drought. Plant Genet Resour Charact Util 10:171–176Google Scholar
  47. Feleke Y, Pasquet RS, Gepts P (2006) Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp. unguiculata var. unguiculata) and highlight its crop-weed complex. Plant Syst Evol 262:75–87Google Scholar
  48. Fery RL (1985) The genetics of cowpea: a review of the world literature. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 25–62Google Scholar
  49. Fotso M, Azanza JL, Pasquet RS, Raymond J (1994) Molecular heterogeneity of cowpea (Vigna unguiculata Fabaceae) seed storage proteins. Plant Syst Evol 191(1/2):39–56Google Scholar
  50. Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea (Vigna unguiculata) cells with an antibiotic-resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46Google Scholar
  51. Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea (Vigna unguiculata) with a full-length DNA copy of cowpea mosaic virus M-RNA. Plant Sci 48:89–98Google Scholar
  52. Ghalmi N, Malice M, Jacquemin JM, Ounane SM, Mekliche L, Baudoin JP (2010) Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet Resour Crop Evol 57(3):371–386Google Scholar
  53. Gomathinayagam P, Ganesh Ram S, Rathnaswamy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 120(2):203–209Google Scholar
  54. Gupta P, Singh R, Malhotra S, Boora KS, Singal HR (2010) Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Phys Mol Biol Plants 16(1):53–58Google Scholar
  55. Hall AE (2004) Comparative ecophysiology of cowpea, common bean and peanut. In: Nguyenand H, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York, pp 271–325Google Scholar
  56. Hall AE (2012) Phenotyping cowpeas for adaptation to drought. Front Physiol 3:1–8Google Scholar
  57. Hall AE, Ismail AM, Ehlers JD, Marfo KO, Cisse N et al (2002) Breeding cowpeas for tolerance to temperature extremes and adaptation to drought. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. International Institute of Tropical Agriculture, Ibadan, pp 14–21Google Scholar
  58. Hancock JF (2005) Contributions of domesticated plant studies to our understanding of plant evolution. Ann Bot 96:953–963PubMedGoogle Scholar
  59. Huesing J, Romeis J, Ellstrand N, Raybould A, Hellmich R, Wolf J, Ehlers J, Dabire C, Fatokun C, Hokanson K et al (2011) Regulatory considerations surrounding the deployment of Bt-expressing cowpea in Africa: report of the deliberations of an expert panel. GM Crops 2(3):211–214Google Scholar
  60. Hussein MM, Balbaa LK, Gaballah MS (2007) Developing a salt tolerant cowpea using alpha tocopherol. J Appl Sci Res 3(10):1234–1239Google Scholar
  61. Huynh BL, Close TJ, Roberts PA, Hu Z, Wannamaker S, Lucas MR, Chiulele R, Cissé N, David A, Hearne S, Fatokum C, Diop NN, Ehlers JD (2013) Genepools and the genetic architecture of domesticated cowpea [Vigna unguiculata (L.) Walp.]. Plant Genome. doi: 10.3835/plantgenome2013.03.0005
  62. Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339–345PubMedGoogle Scholar
  63. Ikea J, Ingelbrecht I, Uwaifo A, Thotttappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218Google Scholar
  64. Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seeds α-amylase inhibitor of the common bean. Entomol Exp Appl 79:309–315Google Scholar
  65. Ishimoto M, Yamada T, Kaga A (1999) Insecticidal activity of an α-amylase inhibitor-like protein resembling a putative precursor of α-amylase inhibitor in the common bean, Phaseolus vulgaris L. Biochim Biophys Acta 1432:104–112PubMedGoogle Scholar
  66. Ismail AM, Hall AE (1998) Positive and potential negative effects of heat-tolerance genes in cowpea lines. Crop Sci 38:381–390Google Scholar
  67. Ivo NL, Nascimento CP, Vieira LS, Campos FAP, Aragão FJL (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483PubMedGoogle Scholar
  68. Jackai LEN, Adalla CB (1997) Pest management practices in cowpea: a review. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. IITA and Japan International Research Centre for Agricultural Sciences (JIRCAS) IITA, Ibadan, pp 240–258Google Scholar
  69. Jackai LEN, Moar W, Thottappilly G (1997) Evaluation of insecticidal crystal proteins form common soil bacterium, Bacillus thuringiensis (Bt) for efficacy against the maruca pod borer, Maruca testulalis. Crop Improvement Division and Biotechnology Research Unit, Archival report (1992–1994), pp 55–57Google Scholar
  70. Javadi F, Tun YT, Kawase M, Guan K, Yamaguchi H (2011) Molecular phylogeny of the subgenus Ceratotropis (genus Vigna, Leguminosae) reveals three eco-geographical groups and Late Pliocene–Pleistocene diversification: evidence from four plastid DNA region sequences. Ann Bot 108(2):367–380PubMedPubMedCentralGoogle Scholar
  71. Kouadio D, Toussaint A, Pasquet RS, Baudoin JP (2006) Barrières pré-zygotiques chez les hybrides entre formes sauvages du niébé, Vigna unguilata (L.) Walp. Biotechnol Agron Soc Environ 10(1):33–41Google Scholar
  72. Kouadio D, Echikh N, Toussaint A, Pasquet RS, Baudoin JP (2007) Organisation du pool génique de Vigna unguiculata (L.) Walp.: croisements entre les formes sauvages et cultivées du niébé. Biotechnol Agron Soc Environ 11:47–57Google Scholar
  73. Kouam EB, Pasquet RS, Campagne P, Tignegre JB, Thoen K, Gaudin R, Ouedraogo JT, Salifu AB, Muluvi GM, Gepts P (2012) Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biol 12:113PubMedPubMedCentralGoogle Scholar
  74. Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lambert D, Ibro G, Moussa B, Kergna A, Kushwaha S, Musa S, Ntoukam G (2003) Cowpea supply and demand in West Africa. Field Crops Res 82:215–231Google Scholar
  75. Lelou B, Diatewa M, Van Damme P (2011) A study of intraspecific hybrid lines derived from the reciprocal crosses between wild accessions and cultivated cowpeas (Vigna unguiculata (L.) Walp.). Afr J Plant Sci 5(6):337–348Google Scholar
  76. Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220Google Scholar
  77. Li CD, Fatokun CA, Ubi B, Singh BB, Scoles G (2001) Determining genetic similarities among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197Google Scholar
  78. Linné C (1760) Disquisito de sexu plantarum. Amoenitates Acad 10:100–131Google Scholar
  79. Lu Y, Yang X (2010) Computational identification of novel MicroRNAs and their targets in Vigna unguiculata. Comp Funct Genom 2010:1–17. doi: 10.1155/2010/128297 Google Scholar
  80. Lüthi C, Álvarez-Alfageme F, Ehlers JD, Higgins TJV, Romeis J (2013) Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res 103:373–381PubMedGoogle Scholar
  81. Maréchal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un group complexe d’espèces des genres Phaseolus et Vigna (Papillionaceae) sur la base de données morphologiques et polliniques traitées par l’analyse informatique. Boissiera 28:1–273Google Scholar
  82. Matsui T, Singh BB (2003) Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agric 39:29–38Google Scholar
  83. Maxted N, Mabuza-Diamini P, Moss H, Padulosi S, Jarvis A, Guarino L (2004) An ecogeographic study: African Vigna. International Plant Genetic Resources Institute, RomeGoogle Scholar
  84. Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217Google Scholar
  85. Mohammed MS, Russom Z, Abdul SD (2010) Studies on crossability between cultivated cowpea (Vigna unguiculata [L.] Walp.) varieties and their wild relative (var. pubescens TVNu110-3A). Int Res J Plant Sci 1(5):133–135Google Scholar
  86. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. PNAS 97:3820–3825PubMedPubMedCentralGoogle Scholar
  87. Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009a) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. PNAS 106(43):18159–18164PubMedPubMedCentralGoogle Scholar
  88. Muchero W, Ehlers JD, Close TJ, Roberts PA (2009b) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118(5):849–863PubMedGoogle Scholar
  89. Muchero W, Ehlers JD, Roberts PA (2010a) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25(1):47–56PubMedPubMedCentralGoogle Scholar
  90. Muchero W, Ehlers JD, Roberts PA (2010b) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 120(3):509–518PubMedPubMedCentralGoogle Scholar
  91. Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8PubMedPubMedCentralGoogle Scholar
  92. Murillo-Amador B, Troyo-Diéguez E, García-Hernández JL et al (2006) Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci Hortic 108(4):423–431Google Scholar
  93. Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985PubMedGoogle Scholar
  94. Ng NQ (1995) Cowpea Vigna unguiculata (Leguminosea-Papilionoidaea). In: Smartt J, Simmonds N (eds) Evolution of crop plants. Longman, London, pp 326–332Google Scholar
  95. Ng NQ, Marechal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 11–21Google Scholar
  96. Nkongolo KK (2003) Genetic characterization of Malawian cowpea (Vigna unguiculata (L.) Walp) landraces: diversity and gene flow among accessions. Euphytica 129:219–228Google Scholar
  97. Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillespie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome 45:175–188PubMedGoogle Scholar
  98. Padulosi S (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walp.). Thèse de doctorat, Université Catholique de Louvain, Louvain-La-Neuve, Belgique, p 228Google Scholar
  99. Padulosi S, Ng N (1997) Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In: Singh B, Mohan Raj D, Dashiel K, Jackai L (eds) Advances in cowpea research. International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS), Ibadan, pp 1–12Google Scholar
  100. Pandiyan M, Senthil N, Ramamoorthi N, Muthiah AR, Tomooka N, Duncan V, Jayaraj T (2010) Interspecific hybridization of Vigna radiata x 13 wild Vigna species for developing MYMV donar. Electron J Plant Breed 1(4):600–610Google Scholar
  101. Panella L, Gepts P (1992) Genetic relationship within Vigna unguiculata (L.) Walp. based on isozyme analyses. Genet Resour Crop Evol 39:71–88Google Scholar
  102. Pasquet RS (1996a) Wild cowpea (Vigna unguiculata) evolution. In: Pickersgill B, Lock J (eds) Legumes of economic importance, vol 8, Advances in legume systematics. Royal Botanic Gardens, Kew, pp 95–100Google Scholar
  103. Pasquet RS (1996b) Cultivated cowpea (Vigna unguiculata): genetic organization and domestication. In: Pickersgill B, Lock J (eds) Legumes of economic importance, vol 8, Advances in legumes systematics. Royal Botanic Gardens, Kew, pp 101–108Google Scholar
  104. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp based on allozyme variation. Theor Appl Genet 98:1104–1119Google Scholar
  105. Pasquet RS (2000) Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101:211–219Google Scholar
  106. Pasquet RS, Baudoin JP (1997) Le niébé, Vigna unguiculata. In: Charrier A, Jacquot M, Hammon S, Nicolas D (eds) L’amélioration des plantes tropicales. CIRAD-ORSTOM, Montpellier, pp 483–505Google Scholar
  107. Pasquet RS, Fotso M (1994) Répartition des cultivars de niébé, Vigna unguiculata (L.) Walp., du Cameroun: influence du milieu et des facteurs humains. J Agric Tradit Bot Appl 36:93–143Google Scholar
  108. Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. PNAS 105(36):13456–13461PubMedPubMedCentralGoogle Scholar
  109. Penza R, Lurquin PF, Filippone E (1991) Gene transfer by co cultivation of mature embryos with Agrobacterium tumefaciens-application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43Google Scholar
  110. Penza R, Akella V, Lurquin PF (1992) Transient expression and histological localization of a gus chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13:576–580PubMedGoogle Scholar
  111. Perrino P, Laghetti G, Spagnoletti Zeuli PL, Monti LM (1993) Diversification of cowpea in the Mediterranean and other centres of cultivation. Genet Resour Crop Evol 40:121–132Google Scholar
  112. Piergiovanni AR (1998) Vigna vexillata (L.) A. Rich seed proteins: heterogeneity in subunits of globulin fraction. Genet Resour Crop Evol 45:97–103Google Scholar
  113. Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312PubMedGoogle Scholar
  114. Pottorff M, Ehlers JD, Fatokun C, Roberts PA, Close TJ (2012a) Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC Genomics 13:234PubMedPubMedCentralGoogle Scholar
  115. Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA et al (2012b) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS One 7(7):e41600PubMedPubMedCentralGoogle Scholar
  116. Rawal KM, Rachie KO, Franckowiak JD (1976) Reduction in seed size in crosses between wild and cultivated cowpeas. J Hered 67:253–254Google Scholar
  117. Saidou AK, Abaidoo RC, Singh BB, Iwuafor ENO, Sanginga N (2007) Variability of cowpea breeding lines to low phosphorus tolerance and response to external application of Phosphorus. In: Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Dordrecht, pp 413–422Google Scholar
  118. Sakupwanya S, Mithen R, Mutangaundura-Mhlanga (1990) Studies on the African Vigna genepool II. Hybridization studies with Vigna unguiculata var. tenuis and var. stenophylla. IBPGR. Plant Genet Res Newsl 78(79):5–10Google Scholar
  119. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82Google Scholar
  120. Sawa M (1974) On the interspecific hybridization between the adzuki bean Phaseolus angularis (Willd.) and the green gram Phaseolus radiatus L. II. On the characteristics of amphiploid in C ~ generation from the cross green gram rice bean, Phaseolus calcaratus Roxb. Jpn J Breed 24:282–286Google Scholar
  121. Sawadogo M, Ouedraogo JT, Gowda BS, Timko MP (2010) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] cultivars in Burkina Faso resistance to Striga gesnerioides. Afr J Biotechnol 9:8146–8153Google Scholar
  122. Schroeder HE, Gollash S, Moore A (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107:1233–1239PubMedPubMedCentralGoogle Scholar
  123. Sen NK, Ghosh AK (1960) Interspecific hybridization between Phaseolus aurens Roxb. (green gram) and Ph. mungo (black gram). Bull Bot Soc Bengal 14:1–4Google Scholar
  124. Sène D (1962) Inventaires des principales variétés de niébé (Vigna unguiculata W.) cultivées au Sénégal. Agron Trop 8:927–933Google Scholar
  125. Shade RE, Schroeder RE, Poueyo JJ, Tabe LM, Murdock LI, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796Google Scholar
  126. Sharma HC (1998) Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata- a review. Crop Prot 17(5):373–386Google Scholar
  127. Simon MV, Benko-Iseppon AM, Resende LV, Winter P, Kahl G (2007) Genetic diversity and phylogenetic relationships in Vigna Savi germplasm revealed by DNA amplification fingerprinting. Genome 50(6):538–547PubMedGoogle Scholar
  128. Singh BB (2005) Cowpea [Vigna unguiculata (L.) Walp. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement, vol 1. CRC Press, Boca Raton, pp 117–162Google Scholar
  129. Singh BB, Matsui T (2002) Cowpea varieties for drought tolerance. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, pp 287–300Google Scholar
  130. Singh BB, N’tar (1985) Development of improved cowpea varieties in Africa. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 105–115Google Scholar
  131. Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850PubMedGoogle Scholar
  132. Sousa-majer MJD, Hardie DC, Turner NC, Higgins TJV (2007) Bean α-Amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100:1416–1422PubMedGoogle Scholar
  133. Tarver MR, Shade RE, Shukle RH, Moar WJ, Muir WM, Murdock LM, Pittendrigh BR (2007) Pyramiding of insecticidal compounds for control of the cowpea bruchid (Callosobruchus maculatus F.). Pest Manag Sci 63:440–446PubMedGoogle Scholar
  134. Thiam M, Champion A, Diouf D, SY MO (2013) NaCl effects on In Vitro germination and growth of some Senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. ISRN Biotechnol 2013:1–11
  135. Thulin M, Lavin M, Pasquet R, Delgado-Salinas A (2004) Phylogeny and biography of Wajira (Leguminosae): a monophyletic segregate of Vigna centered in the Horn of Africa region. Syst Bot 29(4):903–920Google Scholar
  136. Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 227–258Google Scholar
  137. Timko MP, Ehlers JD, Roberts PA (2007) Cowpea. In: Kole C (ed) Genome mapping and molecular breeding in plants, pulses, sugar and tuber crops, vol 3. Springer, Berlin/Heidelberg, pp 49–67Google Scholar
  138. Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Xf C (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:103PubMedPubMedCentralGoogle Scholar
  139. Tosti N, Negri V (2005) On-going on-farm micro evolutionary processes in neighboring cowpea landraces revealed by molecular markers. Theor Appl Genet 110:1275–1283PubMedGoogle Scholar
  140. Tun YT, Yamaguchi H (2007) Phylogenetic relationship of wild and cultivated Vigna (Subgenus Ceratotropis, Fabaceae) from Myanmar based on sequence variations in non-coding regions of trnT-F. Breed Sci 57:271–280Google Scholar
  141. Vaillancourt RE, Weeden NF (1992) Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata, Leguminosae. Am J Bot 79:1194–1199Google Scholar
  142. Vaillancourt RE, Weeden NF, Barnard J (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33:606–613Google Scholar
  143. Vanderborght T, Baudoin JP (2001) Cowpea [Vigna unguiculata (L.) Walpers]. In: Raemaekers RH (ed) Crop production in tropical Africa. Directorate General for International Co-operation, Brussels, pp 334–348Google Scholar
  144. Wang ML, Barkley NA, Gillaspie GA, Pederson GA (2008) Phylogenetic relationships and genetic diversity of the USDA Vigna germplasm collection revealed by gene-derived markers and sequencing. Genet Res 90:467–480Google Scholar
  145. Watt EE, Kueneman EA, de Araujo JPP (1985) Achievement in breeding cowpea in Latin America. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 125–135Google Scholar
  146. Wein HC, Summerfield RJ (1980) Adaptation of cowpeas in West Africa: effects of photoperiod and temperature responses in cultivars of diverse origin. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, pp 405–417Google Scholar
  147. Williams CB, Chambliss OL (1980) Out crossing in southern pea. Hortic Sci 15:179Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Département de Biologie Végétale, Faculté des Sciences et Techniques, Laboratoire de Biotechnologies VégétalesUniversité Cheikh Anta DiopDakarSénégal
  2. 2.Faculté des Sciences et Technologies de l’Education et de la Formation (FASTEF)DakarSénégal

Personalised recommendations