Skip to main content

Abstract

Cowpea (Vigna unguiculata (L.) Walp.) is an important warm-season legume grown mostly by the poor farmers in the semiarid tropics for human consumption and animal feeding. The crop was originated from Africa where it was domesticated from its wild progenitor V. unguiculata subsp. unguiculata var spontanea. In addition, single nucleotide polymorphism markers (SNP) analysis suggested different domestication events from East to West Africa or single domestication process in the first region followed by transportation in the second. On the basis of molecular analyses, the genome organization of the crop was intensively studied, leading to the identification of two gene pools and gene flow between cultivated and wild forms or crop to crop can be a threat to the breeding programs. A wide range of biotic (virus, bacteria, fungi, insects, nematodes, and plants) and abiotic (like low phosphorus availability, soil acidity or salinity, drought, and high temperature at night) factors are limiting cowpea production in different parts of the world. To overcome these constraints, diverse programs were implemented for base broadening using interspecific hybridization between cowpea and other members of its genus with limited success because of pre-zygotic and post-zygotic barriers. These failures led the investigators to implement protocols to introduce foreign genes into cowpea. Currently, several genes of interest such as herbicide imazapyr, α-amylase inhibitor 1 (against bruchids), and Cry1Ab and Cry1Ac (against Maruca) have been introduced successfully into commercially important cultivars, and these genes are transmitted in Mendelian fashion. In addition, significant genomic resources and a consensus genetic map where agronomic, growth habit, disease, pest resistance, and other trait loci have been placed and are usable in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (1999) Pulse susceptibility to Callosobruchus chinensis (L) (Bruchidae: Coleoptera) under field conditions. Trop Agric 76:150

    Google Scholar 

  • Adesoye A, Machuka J, Togun A (2008) CRY 1AB transgenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–3210

    CAS  Google Scholar 

  • Akella V, Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep 12:110–117

    PubMed  CAS  Google Scholar 

  • Andargie M, Pasquet RS, Muluvi GM, Timko MP (2013) Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata). Genome 56:289–294

    PubMed  CAS  Google Scholar 

  • Anderson E (1949) Introgressive hybridization. Wiley, New York

    Google Scholar 

  • Asare AT, Gowda BS, Galyuon IKA, Aboagye LL et al (2010) Assessment of the genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] germplasm from Ghana using simple sequence repeat markers. Plant Genet Resour Charact Util 8:142–150

    CAS  Google Scholar 

  • Asiwe J (2009) Insect mediated out crossing and gene flow in cowpea (Vigna unguiculata (L.) Walp.): Implication for seed production and provision of containment structures for genetically transformed cowpea. Afr J Biotechnol 8:226–230

    Google Scholar 

  • Badiane FA, Diouf D, Sané D, Diouf O, Goudiaby V, Diallo N (2004) Screening cowpea [Vigna unguiculata (L.) Walp.] varieties by inducing water deficit and RAPD analyses. Afr J Biotechnol 3:174–178

    CAS  Google Scholar 

  • Badiane FA, Bhavani SG, Cissé N, Diouf D, Sadio O, Timko MP (2012) Genetic relationship of cowpea Vigna unguiculata varieties from Senegal based on SSR markers. Genet Mol Res 11(1):292–304

    PubMed  CAS  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    PubMed  CAS  Google Scholar 

  • Barone A, Del Giudice A, Ng NQ (1992) Barriers to interspecific hybridization between Vigna unguiculata and Vigna vexillata. Sex Plant Reprod 5(3):195–200

    Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ba-Sylla F, Pasquet RS, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resour Crop Evol 51:539–550

    Google Scholar 

  • Baudoin JP, Maréchal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 3–9

    Google Scholar 

  • Bharathi A, Vijay Selvaraj KS, Veerabadhiran P, Subba Lakshmi B (2006) Crossability barriers in mungbean (Vigna radiata L. Wilczek): with its wild relatives. Indian J Crop Sci 1(1–2):120–124

    Google Scholar 

  • Bisht IS, Bhat KV, Lakhanpaul S, Latha M, Jayan PK, Biswas BK, Singh AK (2005) Diversity and genetic resources of wild Vigna species in India. Genet Resour Crop Evol 52:53–68

    Google Scholar 

  • Boling M, Sander DA, Matlock RS (1961) Mungbean hybridization technique. Agron J 53:54–55

    Google Scholar 

  • Chen X, Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinform 8:129

    CAS  Google Scholar 

  • Cissé N, Wey J, Seck D, Gueye MT, Gueye M (2005) Les légumineuses à grains. In: ISRA, ITA, CIRAD (eds) Bilan de la recherche agricole et agroalimentaire au Sénégal. ISRA/CIRAD, Dakar/Paris, pp 257–266

    Google Scholar 

  • Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32:537–543

    PubMed  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc Lond B 363:557–572

    CAS  Google Scholar 

  • Collins RO (2006) The African slave trade to Asia and the Indian Ocean Islands. Afr Asian Stud 5(3–4):325–346(22)

    Google Scholar 

  • Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. Reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366

    PubMed  CAS  Google Scholar 

  • Craufurd PQ, Summerfield RJ, Ell RH, Roberts EH (1997) Photoperiod, temperature and the growth and development of cowpea (Vigna unguiculata). In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. Co-publication Int Inst Tropic Agric (IITA) and Japan Int Res Center Agric Sci (JIRCAS), Sayce, pp 75–86

    Google Scholar 

  • Dana S (1966a) Cross between Phaseolus attreus Roxb. and P. mtmgo L. Genetics 37:259–274

    Google Scholar 

  • Dana S (1966b) Cross between Phase ~ dus aureus Roxb. and P. ricwardianus. Ten Genrt Ibrr 18:141–156

    Google Scholar 

  • Dana S (1966c) Species cross between Phaseolus aureus Roxb. and P. trilobus Ait. Cytologia 31:176–187

    Google Scholar 

  • Dana S, Karmakar PG (1990) Species relation in Vigna subgenus Ceratotropis and its implications in breeding. In: Janick J (ed) Plant breeding review. Timber Press, Portland, pp 19–42

    Google Scholar 

  • Dantas BF, De Sáribeiro L, Aragão CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Bras Sementes 27(1):144–148

    Google Scholar 

  • Diouf D (2011) Recent advances in cowpea [Vigna unguiculata (L.) Walp.] “omics” research for genetic improvement. Afr J Biotechnol 10(15):2803–2810

    CAS  Google Scholar 

  • Diouf D, Hilu KW (2005) Microsatellites and RAPD markers to study genetic relationship among cowpea breeding lines and local varieties in Senegal. Genet Resour Crop Evol 52:1057–1067

    CAS  Google Scholar 

  • Doebley J, Stec A, Wendel J et al (1990) Genetic and morphological analysis of maize-teosinte F2 population: implications for the origin of maize. PNAS 87(24):9888–9892

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doi K, Kaga A, Tomooka N, Vaughan DA (2002) Molecular phylogeny of genus Vigna subgenus Ceratotropis based on rDNA ITS and atpB-rbcL intergenic spacer of cpDNA sequences. Genetica 114:129–145

    PubMed  CAS  Google Scholar 

  • Dumet D, Fatokun C (2010) Global strategy for the conservation of cowpea (Vigna unguiculata ssp. unguiculata). World cowpea conference, September, Saly, Senegal

    Google Scholar 

  • Echikh N (2000) Organisation du pool génique de formes sauvages et cultivées d’une légumineuse alimentaire, Vigna unguiculata (L.) Walp. Thèse de doctorat, Faculté universitaire des Sciences agronomiques, Gembloux, Belgique, p 307

    Google Scholar 

  • Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679

    Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204

    Google Scholar 

  • Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res 55:11–21

    Google Scholar 

  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond B 358:1163–1170

    Google Scholar 

  • Fall L, Diouf D, Fall-Ndiaye MA, Badiane FA, Gueye M (2003) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] varieties determined by ARA and RAPD techniques. Afr J Biotechnol 2:48–50

    CAS  Google Scholar 

  • Fang J, Chao CCT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209

    CAS  Google Scholar 

  • Fatokun CA (1991) Wide hybridization in cowpea: problems and prospects. Euphytica 54:137–140

    Google Scholar 

  • Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and V. vexillata. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (ed) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III, held at the International Institute of Tropical Agriculture, IITA, Ibadan Nigeria, 4–8 2000. IITA, Ibadan

    Google Scholar 

  • Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens and V. unquiculata (L.) Walp through embryo rescue. Plant Cell Tissue Organ Cult 9(3):229–233

    Google Scholar 

  • Fatokun CA, Danesh D, Menancio-Hautea D, Young ND (1993) A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 6.256–6.258

    Google Scholar 

  • Fatokun CA, Ousmane B, Satoru M (2012) Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to Drought. Plant Genet Resour Charact Util 10:171–176

    Google Scholar 

  • Feleke Y, Pasquet RS, Gepts P (2006) Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp. unguiculata var. unguiculata) and highlight its crop-weed complex. Plant Syst Evol 262:75–87

    CAS  Google Scholar 

  • Fery RL (1985) The genetics of cowpea: a review of the world literature. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 25–62

    Google Scholar 

  • Fotso M, Azanza JL, Pasquet RS, Raymond J (1994) Molecular heterogeneity of cowpea (Vigna unguiculata Fabaceae) seed storage proteins. Plant Syst Evol 191(1/2):39–56

    CAS  Google Scholar 

  • Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea (Vigna unguiculata) cells with an antibiotic-resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46

    CAS  Google Scholar 

  • Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea (Vigna unguiculata) with a full-length DNA copy of cowpea mosaic virus M-RNA. Plant Sci 48:89–98

    CAS  Google Scholar 

  • Ghalmi N, Malice M, Jacquemin JM, Ounane SM, Mekliche L, Baudoin JP (2010) Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet Resour Crop Evol 57(3):371–386

    CAS  Google Scholar 

  • Gomathinayagam P, Ganesh Ram S, Rathnaswamy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 120(2):203–209

    Google Scholar 

  • Gupta P, Singh R, Malhotra S, Boora KS, Singal HR (2010) Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Phys Mol Biol Plants 16(1):53–58

    CAS  Google Scholar 

  • Hall AE (2004) Comparative ecophysiology of cowpea, common bean and peanut. In: Nguyenand H, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York, pp 271–325

    Google Scholar 

  • Hall AE (2012) Phenotyping cowpeas for adaptation to drought. Front Physiol 3:1–8

    Google Scholar 

  • Hall AE, Ismail AM, Ehlers JD, Marfo KO, Cisse N et al (2002) Breeding cowpeas for tolerance to temperature extremes and adaptation to drought. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. International Institute of Tropical Agriculture, Ibadan, pp 14–21

    Google Scholar 

  • Hancock JF (2005) Contributions of domesticated plant studies to our understanding of plant evolution. Ann Bot 96:953–963

    PubMed  CAS  Google Scholar 

  • Huesing J, Romeis J, Ellstrand N, Raybould A, Hellmich R, Wolf J, Ehlers J, Dabire C, Fatokun C, Hokanson K et al (2011) Regulatory considerations surrounding the deployment of Bt-expressing cowpea in Africa: report of the deliberations of an expert panel. GM Crops 2(3):211–214

    Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Developing a salt tolerant cowpea using alpha tocopherol. J Appl Sci Res 3(10):1234–1239

    CAS  Google Scholar 

  • Huynh BL, Close TJ, Roberts PA, Hu Z, Wannamaker S, Lucas MR, Chiulele R, Cissé N, David A, Hearne S, Fatokum C, Diop NN, Ehlers JD (2013) Genepools and the genetic architecture of domesticated cowpea [Vigna unguiculata (L.) Walp.]. Plant Genome. doi:10.3835/plantgenome2013.03.0005

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339–345

    PubMed  CAS  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thotttappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218

    CAS  Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seeds α-amylase inhibitor of the common bean. Entomol Exp Appl 79:309–315

    CAS  Google Scholar 

  • Ishimoto M, Yamada T, Kaga A (1999) Insecticidal activity of an α-amylase inhibitor-like protein resembling a putative precursor of α-amylase inhibitor in the common bean, Phaseolus vulgaris L. Biochim Biophys Acta 1432:104–112

    PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE (1998) Positive and potential negative effects of heat-tolerance genes in cowpea lines. Crop Sci 38:381–390

    Google Scholar 

  • Ivo NL, Nascimento CP, Vieira LS, Campos FAP, Aragão FJL (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483

    PubMed  CAS  Google Scholar 

  • Jackai LEN, Adalla CB (1997) Pest management practices in cowpea: a review. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. IITA and Japan International Research Centre for Agricultural Sciences (JIRCAS) IITA, Ibadan, pp 240–258

    Google Scholar 

  • Jackai LEN, Moar W, Thottappilly G (1997) Evaluation of insecticidal crystal proteins form common soil bacterium, Bacillus thuringiensis (Bt) for efficacy against the maruca pod borer, Maruca testulalis. Crop Improvement Division and Biotechnology Research Unit, Archival report (1992–1994), pp 55–57

    Google Scholar 

  • Javadi F, Tun YT, Kawase M, Guan K, Yamaguchi H (2011) Molecular phylogeny of the subgenus Ceratotropis (genus Vigna, Leguminosae) reveals three eco-geographical groups and Late Pliocene–Pleistocene diversification: evidence from four plastid DNA region sequences. Ann Bot 108(2):367–380

    PubMed  PubMed Central  Google Scholar 

  • Kouadio D, Toussaint A, Pasquet RS, Baudoin JP (2006) Barrières pré-zygotiques chez les hybrides entre formes sauvages du niébé, Vigna unguilata (L.) Walp. Biotechnol Agron Soc Environ 10(1):33–41

    Google Scholar 

  • Kouadio D, Echikh N, Toussaint A, Pasquet RS, Baudoin JP (2007) Organisation du pool génique de Vigna unguiculata (L.) Walp.: croisements entre les formes sauvages et cultivées du niébé. Biotechnol Agron Soc Environ 11:47–57

    Google Scholar 

  • Kouam EB, Pasquet RS, Campagne P, Tignegre JB, Thoen K, Gaudin R, Ouedraogo JT, Salifu AB, Muluvi GM, Gepts P (2012) Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biol 12:113

    PubMed  PubMed Central  Google Scholar 

  • Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lambert D, Ibro G, Moussa B, Kergna A, Kushwaha S, Musa S, Ntoukam G (2003) Cowpea supply and demand in West Africa. Field Crops Res 82:215–231

    Google Scholar 

  • Lelou B, Diatewa M, Van Damme P (2011) A study of intraspecific hybrid lines derived from the reciprocal crosses between wild accessions and cultivated cowpeas (Vigna unguiculata (L.) Walp.). Afr J Plant Sci 5(6):337–348

    Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220

    Google Scholar 

  • Li CD, Fatokun CA, Ubi B, Singh BB, Scoles G (2001) Determining genetic similarities among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197

    CAS  Google Scholar 

  • Linné C (1760) Disquisito de sexu plantarum. Amoenitates Acad 10:100–131

    Google Scholar 

  • Lu Y, Yang X (2010) Computational identification of novel MicroRNAs and their targets in Vigna unguiculata. Comp Funct Genom 2010:1–17. doi:10.1155/2010/128297

    Google Scholar 

  • Lüthi C, Álvarez-Alfageme F, Ehlers JD, Higgins TJV, Romeis J (2013) Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res 103:373–381

    PubMed  Google Scholar 

  • Maréchal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un group complexe d’espèces des genres Phaseolus et Vigna (Papillionaceae) sur la base de données morphologiques et polliniques traitées par l’analyse informatique. Boissiera 28:1–273

    Google Scholar 

  • Matsui T, Singh BB (2003) Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agric 39:29–38

    Google Scholar 

  • Maxted N, Mabuza-Diamini P, Moss H, Padulosi S, Jarvis A, Guarino L (2004) An ecogeographic study: African Vigna. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217

    Google Scholar 

  • Mohammed MS, Russom Z, Abdul SD (2010) Studies on crossability between cultivated cowpea (Vigna unguiculata [L.] Walp.) varieties and their wild relative (var. pubescens TVNu110-3A). Int Res J Plant Sci 1(5):133–135

    Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. PNAS 97:3820–3825

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009a) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. PNAS 106(43):18159–18164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2009b) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118(5):849–863

    PubMed  CAS  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010a) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25(1):47–56

    PubMed  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010b) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 120(3):509–518

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murillo-Amador B, Troyo-Diéguez E, García-Hernández JL et al (2006) Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci Hortic 108(4):423–431

    CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985

    PubMed  CAS  Google Scholar 

  • Ng NQ (1995) Cowpea Vigna unguiculata (Leguminosea-Papilionoidaea). In: Smartt J, Simmonds N (eds) Evolution of crop plants. Longman, London, pp 326–332

    Google Scholar 

  • Ng NQ, Marechal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 11–21

    Google Scholar 

  • Nkongolo KK (2003) Genetic characterization of Malawian cowpea (Vigna unguiculata (L.) Walp) landraces: diversity and gene flow among accessions. Euphytica 129:219–228

    CAS  Google Scholar 

  • Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillespie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome 45:175–188

    PubMed  Google Scholar 

  • Padulosi S (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walp.). Thèse de doctorat, Université Catholique de Louvain, Louvain-La-Neuve, Belgique, p 228

    Google Scholar 

  • Padulosi S, Ng N (1997) Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In: Singh B, Mohan Raj D, Dashiel K, Jackai L (eds) Advances in cowpea research. International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS), Ibadan, pp 1–12

    Google Scholar 

  • Pandiyan M, Senthil N, Ramamoorthi N, Muthiah AR, Tomooka N, Duncan V, Jayaraj T (2010) Interspecific hybridization of Vigna radiata x 13 wild Vigna species for developing MYMV donar. Electron J Plant Breed 1(4):600–610

    Google Scholar 

  • Panella L, Gepts P (1992) Genetic relationship within Vigna unguiculata (L.) Walp. based on isozyme analyses. Genet Resour Crop Evol 39:71–88

    Google Scholar 

  • Pasquet RS (1996a) Wild cowpea (Vigna unguiculata) evolution. In: Pickersgill B, Lock J (eds) Legumes of economic importance, vol 8, Advances in legume systematics. Royal Botanic Gardens, Kew, pp 95–100

    Google Scholar 

  • Pasquet RS (1996b) Cultivated cowpea (Vigna unguiculata): genetic organization and domestication. In: Pickersgill B, Lock J (eds) Legumes of economic importance, vol 8, Advances in legumes systematics. Royal Botanic Gardens, Kew, pp 101–108

    Google Scholar 

  • Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp based on allozyme variation. Theor Appl Genet 98:1104–1119

    CAS  Google Scholar 

  • Pasquet RS (2000) Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101:211–219

    CAS  Google Scholar 

  • Pasquet RS, Baudoin JP (1997) Le niébé, Vigna unguiculata. In: Charrier A, Jacquot M, Hammon S, Nicolas D (eds) L’amélioration des plantes tropicales. CIRAD-ORSTOM, Montpellier, pp 483–505

    Google Scholar 

  • Pasquet RS, Fotso M (1994) Répartition des cultivars de niébé, Vigna unguiculata (L.) Walp., du Cameroun: influence du milieu et des facteurs humains. J Agric Tradit Bot Appl 36:93–143

    Google Scholar 

  • Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. PNAS 105(36):13456–13461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Penza R, Lurquin PF, Filippone E (1991) Gene transfer by co cultivation of mature embryos with Agrobacterium tumefaciens-application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43

    CAS  Google Scholar 

  • Penza R, Akella V, Lurquin PF (1992) Transient expression and histological localization of a gus chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13:576–580

    PubMed  CAS  Google Scholar 

  • Perrino P, Laghetti G, Spagnoletti Zeuli PL, Monti LM (1993) Diversification of cowpea in the Mediterranean and other centres of cultivation. Genet Resour Crop Evol 40:121–132

    Google Scholar 

  • Piergiovanni AR (1998) Vigna vexillata (L.) A. Rich seed proteins: heterogeneity in subunits of globulin fraction. Genet Resour Crop Evol 45:97–103

    Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    PubMed  CAS  Google Scholar 

  • Pottorff M, Ehlers JD, Fatokun C, Roberts PA, Close TJ (2012a) Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC Genomics 13:234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA et al (2012b) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS One 7(7):e41600

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rawal KM, Rachie KO, Franckowiak JD (1976) Reduction in seed size in crosses between wild and cultivated cowpeas. J Hered 67:253–254

    Google Scholar 

  • Saidou AK, Abaidoo RC, Singh BB, Iwuafor ENO, Sanginga N (2007) Variability of cowpea breeding lines to low phosphorus tolerance and response to external application of Phosphorus. In: Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Dordrecht, pp 413–422

    Google Scholar 

  • Sakupwanya S, Mithen R, Mutangaundura-Mhlanga (1990) Studies on the African Vigna genepool II. Hybridization studies with Vigna unguiculata var. tenuis and var. stenophylla. IBPGR. Plant Genet Res Newsl 78(79):5–10

    Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    CAS  Google Scholar 

  • Sawa M (1974) On the interspecific hybridization between the adzuki bean Phaseolus angularis (Willd.) and the green gram Phaseolus radiatus L. II. On the characteristics of amphiploid in C ~ generation from the cross green gram rice bean, Phaseolus calcaratus Roxb. Jpn J Breed 24:282–286

    Google Scholar 

  • Sawadogo M, Ouedraogo JT, Gowda BS, Timko MP (2010) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] cultivars in Burkina Faso resistance to Striga gesnerioides. Afr J Biotechnol 9:8146–8153

    CAS  Google Scholar 

  • Schroeder HE, Gollash S, Moore A (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107:1233–1239

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sen NK, Ghosh AK (1960) Interspecific hybridization between Phaseolus aurens Roxb. (green gram) and Ph. mungo (black gram). Bull Bot Soc Bengal 14:1–4

    Google Scholar 

  • Sène D (1962) Inventaires des principales variétés de niébé (Vigna unguiculata W.) cultivées au Sénégal. Agron Trop 8:927–933

    Google Scholar 

  • Shade RE, Schroeder RE, Poueyo JJ, Tabe LM, Murdock LI, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796

    CAS  Google Scholar 

  • Sharma HC (1998) Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata- a review. Crop Prot 17(5):373–386

    Google Scholar 

  • Simon MV, Benko-Iseppon AM, Resende LV, Winter P, Kahl G (2007) Genetic diversity and phylogenetic relationships in Vigna Savi germplasm revealed by DNA amplification fingerprinting. Genome 50(6):538–547

    PubMed  CAS  Google Scholar 

  • Singh BB (2005) Cowpea [Vigna unguiculata (L.) Walp. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement, vol 1. CRC Press, Boca Raton, pp 117–162

    Google Scholar 

  • Singh BB, Matsui T (2002) Cowpea varieties for drought tolerance. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, pp 287–300

    Google Scholar 

  • Singh BB, N’tar (1985) Development of improved cowpea varieties in Africa. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 105–115

    Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    PubMed  CAS  Google Scholar 

  • Sousa-majer MJD, Hardie DC, Turner NC, Higgins TJV (2007) Bean α-Amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100:1416–1422

    PubMed  Google Scholar 

  • Tarver MR, Shade RE, Shukle RH, Moar WJ, Muir WM, Murdock LM, Pittendrigh BR (2007) Pyramiding of insecticidal compounds for control of the cowpea bruchid (Callosobruchus maculatus F.). Pest Manag Sci 63:440–446

    PubMed  CAS  Google Scholar 

  • Thiam M, Champion A, Diouf D, SY MO (2013) NaCl effects on In Vitro germination and growth of some Senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. ISRN Biotechnol 2013:1–11 http://dx.doi.org/10.5402/2013/382417

  • Thulin M, Lavin M, Pasquet R, Delgado-Salinas A (2004) Phylogeny and biography of Wajira (Leguminosae): a monophyletic segregate of Vigna centered in the Horn of Africa region. Syst Bot 29(4):903–920

    Google Scholar 

  • Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 227–258

    Google Scholar 

  • Timko MP, Ehlers JD, Roberts PA (2007) Cowpea. In: Kole C (ed) Genome mapping and molecular breeding in plants, pulses, sugar and tuber crops, vol 3. Springer, Berlin/Heidelberg, pp 49–67

    Google Scholar 

  • Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Xf C (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:103

    PubMed  PubMed Central  Google Scholar 

  • Tosti N, Negri V (2005) On-going on-farm micro evolutionary processes in neighboring cowpea landraces revealed by molecular markers. Theor Appl Genet 110:1275–1283

    PubMed  CAS  Google Scholar 

  • Tun YT, Yamaguchi H (2007) Phylogenetic relationship of wild and cultivated Vigna (Subgenus Ceratotropis, Fabaceae) from Myanmar based on sequence variations in non-coding regions of trnT-F. Breed Sci 57:271–280

    CAS  Google Scholar 

  • Vaillancourt RE, Weeden NF (1992) Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata, Leguminosae. Am J Bot 79:1194–1199

    CAS  Google Scholar 

  • Vaillancourt RE, Weeden NF, Barnard J (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33:606–613

    CAS  Google Scholar 

  • Vanderborght T, Baudoin JP (2001) Cowpea [Vigna unguiculata (L.) Walpers]. In: Raemaekers RH (ed) Crop production in tropical Africa. Directorate General for International Co-operation, Brussels, pp 334–348

    Google Scholar 

  • Wang ML, Barkley NA, Gillaspie GA, Pederson GA (2008) Phylogenetic relationships and genetic diversity of the USDA Vigna germplasm collection revealed by gene-derived markers and sequencing. Genet Res 90:467–480

    CAS  Google Scholar 

  • Watt EE, Kueneman EA, de Araujo JPP (1985) Achievement in breeding cowpea in Latin America. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 125–135

    Google Scholar 

  • Wein HC, Summerfield RJ (1980) Adaptation of cowpeas in West Africa: effects of photoperiod and temperature responses in cultivars of diverse origin. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, pp 405–417

    Google Scholar 

  • Williams CB, Chambliss OL (1980) Out crossing in southern pea. Hortic Sci 15:179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diaga Diouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Badiane, F.A., Diouf, M., Diouf, D. (2014). Cowpea. In: Singh, M., Bisht, I., Dutta, M. (eds) Broadening the Genetic Base of Grain Legumes. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2023-7_5

Download citation

Publish with us

Policies and ethics