Common Bean



The chapter on the common bean reviews the origin and domestication, gene pool organization and their evolutionary relationship, genetic diversity and gene flow assessment, production constraints, crop production-limiting factors, and crop improvement strategies. While the common bean originated in the Americas, it is now widely grown in all continents of the world. Several bean germplasm banks have been established and contain diverse genetic resources comprising five domesticated and wild Phaseolus species, as well as an incipient stock collection. Unique among crop plants, the common bean consists of two geographically distinct evolutionary lineages that predate domestication and trace back to a common, still extant ancestor. The common bean cultivated across the world comprises of two major gene pools: the Andean originating from the Andes mountains of South America and the Mesoamerican from Mexico and Central America along with well-established races. Gene flow between domesticated and wild beans led to substantial introgression of alleles from the domesticated gene pool into the wild gene pool and vice versa. Like other crops, the common bean also suffers from various biotic and abiotic stresses; however, these constraints vary with the agroecological regions experiencing tropical to temperate environments. The important biotic and abiotic constraints limiting bean production are bean anthracnose, angular leaf spot, bean common mosaic and necrosis virus, bean golden mosaic virus, bacterial blights, drought, and phosphorus deficiency. The common bean improvement program in Europe and the USA is mainly focused on biotic and abiotic factors, mainly diseases, drought, and biofortification involving intra- and interspecific hybridization programs. Various breeding methods, namely, recurrent backcrossing, congruity backcrossing, inbred backcross line and gamete selection using multiple-parent crosses, and recurrent selection, have been used to transfer the trait of interest from related species. Resistance to various diseases has been transferred from P. coccineus, P. acutifolius, P. costaricensis to Phaseolus vulgaris. In addition, P. acutifolius and P. parvifolius have been explored to transfer high iron content to P. vulgaris. The crop improvement program over the last two decades involves the use of a marker-assisted selection strategy as a number of useful genes vis-à-vis molecular markers linked to them have been identified. In addition, bean transformation protocols have also been developed to facilitate introgression of alien genes. The sequencing of whole common bean genome is going to open an era of functional genomics to understand, identify, and overcome the constraints experienced by researchers across the world.


Gene Pool Common Bean Restriction Fragment Length Polymorphism Marker Angular Leaf Spot Common Bacterial Blight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abawi GS, Widmer TL (2000) Impact of soil health management practices on soil borne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47Google Scholar
  2. Acosta-Gallegos JA, Adams MW (1991) Plant traits and yield stability of dry bean (Phaseolus vulgaris) cultivars under drought stress. J Agric Sci (Cambridge) 117:213–219Google Scholar
  3. Acosta-Gallegos JA, Ocoa-Marquez R, Arrieta-Montiel MP, Ibarra-Perez F, Pajarito-Ravelero A, Sanchez-Valdez I (1995) Registration of Pinto Villa common bean. Crop Sci 35:1211Google Scholar
  4. Acosta-Gallegos JA, Acosta E, Padilla S, Goytia MA, Rosales R, López E (1999) Mejoramiento de la resistencia a la sequía del frijol común en México. Agron Mesoam 10:83–90Google Scholar
  5. Acosta-Gallejos JA, Ibarra-Perez FJ, Cazares-Enriqez B, Castillo-Rosales A, Rosales-Serna R, Kelly JD, Singh SP (2004) Registration of ‘Negro Vizcaya’ shiny black bean. Crop Sci 44:1866–1867Google Scholar
  6. Adam-Blondon A, Sévignac M, Bannerot H, Dron M (1994) SCAR, RAPD and RFLP markers tightly linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88:865–870PubMedGoogle Scholar
  7. Aggarwal VD, Pastor-Corrales MA, Chirwa RM, Buruchara RA (2004) Andean beans (Phaseolus vulgaris L.) with resistance to the angular leaf spot pathogen Phaeoisariopsis griseola) in southern and eastern Africa. Euphytica 136:201–210Google Scholar
  8. Allen DJ, Ampofo JKO, Wortmann CS (1998) Pests diseases and nutritional disorders of the common bean in Africa. CIAT, Cali, p 131Google Scholar
  9. Alzate-Marin AL, Menatim H, Baia GS, Paula TJ, de Souza KA, da Costa MR, de Barros E, Moreira MA (2001) Inheritance of anthracnose resistance in the common bean differential cultivar G 2333 and identification of a new molecular marker linked to the Co-4(2) gene. J Phytopathol- Phytopathologische Zeitschrift 149:259–264Google Scholar
  10. Alzate-Marin AL, Cervigni GDL, Moreira MA, Barros EG (2005) Seleção assistida por marcadores moleculares visando ao desenvolvimento de plantas resistentes a doenças, com ênfase em feijoeiro e soja. Fitopatol Bras 30:333–342Google Scholar
  11. Aragão FJL, Desa MFG, Almeida ER, Gander ES, Rech EL (1992) Particle bombardment mediated transient expression of a Brazil nut methionine-rich albumin in bean (Phaseolus vulgaris L). Plant Mol Biol 20:357–359PubMedGoogle Scholar
  12. Aragão FJL, Desa MFG, Davey MR, Brasileiro ACM, Faria JC, Rech EL (1993) Factors influencing transient gene-expression in bean (Phaseolus vulgaris L) using an electrical particle acceleration device. Plant Cell Rep 12:483–490PubMedGoogle Scholar
  13. Aragão F, Barros L, Brasileiro A, Ribeiro S, Smith F, Sanford J, Faria J, Rech E (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L) co-transformed via particle bombardment. Theor Appl Genet 93:142–150PubMedGoogle Scholar
  14. Aragão FJL, Ribeiro SG, Barros LMG (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4(6):491–499Google Scholar
  15. Aragão FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor Appl Genet 101:1–6Google Scholar
  16. Aragão FJL, Vianna GRM, Albino MC, Rech EL (2002) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42(4):1298–1302Google Scholar
  17. Arndt GC, Gepts P (1989) Segregation and linkage for morphological and biochemical markers in a wide cross in common bean (Phaseolus vulgaris). Ann Rep Bean Improv Coop 32:68–69Google Scholar
  18. Asensio S, Manzanera MC, Asensio C, Singh SP (2005) Introgressing resistance to bacterial and viral diseases from the Middle American to Andean common bean. Euphytica 143:223–228Google Scholar
  19. Asensio S, Manzanera MC, Asensio C, Singh SP (2006) Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations. Crop Sci 46:131–135Google Scholar
  20. Awale HE, Kelly JD (2001) Development of SCAR markers linked to Co-42 gene in common bean. Annu Rep Bean Improv Coop 44:119–120Google Scholar
  21. Baggett JR (1956) The inheritance of resistance to strains of bean yellow mosaic virus in the interspecific cross Phaseolus vulgaris × P. coccineus. Plant Dis Rep 40:702–707Google Scholar
  22. Balardin RS, Kelly JD (1998) Interaction among races of Colletotrichum lindemuthianum and diversity in Phaseolus vulgaris. J Am Soc Hortic Sci 123:1038–1047Google Scholar
  23. Barron JE, Pasini RS, Davis DW, Stuthman DD, Graham PH (1999) Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris L.). Field Crop Res 62:119–128Google Scholar
  24. Bassett MJ (1991) A revised linkage map of common bean. Hortic Sci 26:834–836Google Scholar
  25. Baudoin JP (2001) Contribution des ressources phytogénétiques à la selection variétale de légumineuses alimentaires tropicales. Biotechnol Agron Soc Environ 5(4):221–230Google Scholar
  26. Baudoin JP, Camarena F, Lobo M (1995) Amélioration de quatre espèces de légumineuses alimentaires tropicales Phaseolus vulgaris, P. coccineus, P. polyanthus et P. lunatus. Sélection intra- et interspécifique. In: Quel Avenir Pour l’amélioration des Plantes? Quatrièmes Journées Scientifiques du Réseau Biotechnologie Végétale de l’UREF, Namur, 18–21 Octobre 1993. Ed. par J Dubois, Y Demarly, AUPELF-UREF. John Libbey Eurotext, Paris, pp 31–49Google Scholar
  27. Baudoin JP, Fofana B, du Jardin P, Vekemans X (1998) Diversity and genetic organization of the genus Phaseolus. Analysis of the global and chloroplastic genome. In: International symposium on breeding of protein and oil crops. EUCARPIA, Fundación Pedro Barrié De La Maza, pp 75–76Google Scholar
  28. Baudoin JP, Camarena F, Lobo M, Mergeai G (2001) Breeding Phaseolus for intercrop combinations in Andean highlands. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic basis of the crop. CAB International, Wallingford, pp 373–384Google Scholar
  29. Beaver JS, Kelly JD (1994) Comparison of selection methods for dry bean populations derived from crosses between gene pools. Crop Sci 34:34–37Google Scholar
  30. Beaver JS, Rosas JC (1998) Heritability of the length of reproductive period and rate of seed mass accumulation in common bean. J Am Soc Hortic Sci 123:407–411Google Scholar
  31. Beaver JS, Osorno JM, Ferwerda FH, Muñoz Perea CG (2005) Registration of bean golden yellow mosaic virus resistant germplasms PR9771-3-1, PR0247-49 and PR0157-4-1. Crop Sci 45:2126Google Scholar
  32. Becerra-Velásquez VL, Gepts P (1994) RFLP diversity in common bean (Phaseolus vulgaris L.). Genome 37:256–263Google Scholar
  33. Beebe SE, Bliss FA (1981) Root rot resistance in common bean germplasm of Latin American origin. Plant Dis 65:485–489Google Scholar
  34. Beebe SE, Pastor-Corrales M (1991) Breeding for disease resistance. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International/CIAT, Wallingford/Cali, pp 561–617Google Scholar
  35. Beebe S, Lynch J, Galwey N, Tohme J, Ochoa I (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–336Google Scholar
  36. Beebe S, Skroch P, Tohme J, Duque MC, Pedraza F, Nienhhuis J (2000) Structure of genetic diversity among common bean landraces of middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273Google Scholar
  37. Beebe S, Rengifo J, Gaita´n-Solý´s E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862Google Scholar
  38. Beebe S, Rao I, Teran H, Cajiao C (2004) Breeding concepts and approaches in food legumes: the example of the common bean. Abstract of paper presented at the “Second national workshop on food and forage legumes” Addis Ababa, Ethiopia, 22–26 Sept 2003Google Scholar
  39. Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F et al (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423Google Scholar
  40. Bemis WP, Kedar N (1961) Inheritance of morphological abnormalities in seedlings of two species of Phaseolus. J Hered 52:171–178Google Scholar
  41. Bennett M, Leitch I (2005) Angiosperm DNA C-Values database. Release 4.0Google Scholar
  42. Berglund-Brucher O, Brucher H (1976) The South American wild bean (Phaseolus aborigineus Burk.) an ancestor of common bean. Econ Bot 30:257–272Google Scholar
  43. Bianchini A, Moda-Cirino V, Fonseca NS, Toledo FF (1994) Genética de resistência ao v´ýrus do mosaico dourado do feijoeiro. (Abstr) Fitopatol Bras 19:329Google Scholar
  44. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci 109:788–796Google Scholar
  45. Blair MW, Muñoz MC, Beebe SE (2002) QTL analysis of drought and abiotic stress tolerance in common bean RIL populations. In: Annual report, Biotechnology Research Project. CIAT, Cali, Colombia, pp 68–72Google Scholar
  46. Blair MW, Pedraza F, Buendia HF, Gaita n-Solý´s E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374PubMedGoogle Scholar
  47. Blair MW, Giraldo MC, Buendía HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109PubMedGoogle Scholar
  48. Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean and wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163PubMedGoogle Scholar
  49. Blair MW, Muñoz C, Garza R, Cardona C (2006c) Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theor Appl Genet 112:913–923PubMedGoogle Scholar
  50. Blair MW, Dìaz JM, Hidalgo R, Dìaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43PubMedGoogle Scholar
  51. Blair M, Diaz LM, Buendia HF, Duque MC (2009a) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972PubMedGoogle Scholar
  52. Blair MW, Astudillo C, Grusak M, Graham R, Beebe S (2009b) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207Google Scholar
  53. Blair MW, González LF, Kimani PM, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248PubMedPubMedCentralGoogle Scholar
  54. Blair MW, Hurtado N, Sharma PN (2012a) New gene-derived simple sequence repeat markers for common bean (Phaseolus vulgaris L.). Mol Ecol Res 12:661–668Google Scholar
  55. Blair MW, Soler A, Cortes AJ (2012b) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One 7(11):e49488PubMedPubMedCentralGoogle Scholar
  56. Bliss FA (1993) Breeding common bean for improved nitrogen fixation. Plant Soil 152:71–79Google Scholar
  57. Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C et al (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Inter 14:695–700Google Scholar
  58. Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragão FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Inter 20:717–726Google Scholar
  59. Boutin S, Young N, Olson T, Yu Z, Shoemaker R et al (1995) Genome conservation among three legume genera detected with DNA markers. Genetics 38:928–937Google Scholar
  60. Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.): model food legumes. Plant Soil 252:55–128Google Scholar
  61. Brucher H (1988) The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P (ed) Genetic resources of Phaseolus beans: their maintenance, domestication, evolution and utilization. Kluwer, Dordrecht, pp 185–214Google Scholar
  62. Burkart A (1941) Sobre la existencia de razas silvestres de Phaseolus vulgaris. Resol. Y Trab. I Ren. Argent. Agron., Buenos Aires, p 52Google Scholar
  63. Burkart A, Brucher H (1953) Phaseolus aborigineus Burkart, die mutmassliche andine Stammform der Kulturbohne. Zuchter 23:65–72Google Scholar
  64. Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean – Phaseolus vulgaris. Mol Ecol Notes 6:252–254Google Scholar
  65. Cabral PDS, Soares TCB, Lima ABP, de Miranda FD, Souza FB, Gonçalves LSA (2011) Genetic diversity in local and commercial dry bean (Phaseolus vulgaris) accessions based on microsatellite markers. Genet Mol Res 10(1):140–149PubMedGoogle Scholar
  66. Caixeta ET, Borém A, Kelly JD (2005) Development of microsatellite markers based on BAC common bean clones. Crop Breed Appl Biotechnol 5:125–133Google Scholar
  67. Camarena F, Baudoin JP (1987) Obtention des premiers hybrids interspecifiques entre Phaseolus vulgaris et Phaseolus polyanthus avec le cytoplasme de cette derniere forme. Bull Rech Agron Gembloux 22:43–55Google Scholar
  68. Campa A, Giraldez R, Ferreira JJ (2009) Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theor Appl Genet 119:1–11PubMedGoogle Scholar
  69. Cardoso JMK (2009) Estimativa da Diversidade Genética entre Acessos do Tipo Carioca de Feijão Comum com Base em Marcadores Moleculares. Dissertação de Mestrado, Instituto Agronômico de Campinas, CampinasGoogle Scholar
  70. Castellanos JZ, Peña-Cabrales JJ, Acosta-Gallegos JA (1996) 15 N-determined dinitrogen fixation capacity of common bean (Phaseolus vulgaris) cultivars underwater stress. J Agric Sci 126:327–333Google Scholar
  71. Chacon MI, Gonzalez AV, Gutierrez JP, Beebe S, Debouck DG (1996) Increased evidence for common bean (Phaseolus vulgaris) domestication in Colombia. Ann Rep Bean Improv Coop 39:201–202Google Scholar
  72. Chacón MI, Pickersgill S, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444Google Scholar
  73. Chacon MI, Pickersgill B, Debouck DG, Arias JS (2007) Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant Syst Evol 266:175–195Google Scholar
  74. Chowdhury MA, Yu K, Park SJ (2002) Molecular mapping of root rot resistance in common bean. Ann Rep Bean Improv Coop 45:96–97Google Scholar
  75. Costa MR, Tanure JPM, Arruda KMA, Carneiro JES, Moreira MA et al (2006) Pyramiding of anthracnose, angular leaf spot and rust resistance genes in black and red bean cultivars. Ann Rep Bean Improv Coop 49:187–188Google Scholar
  76. Debouck DG (1991) Systematics and morphology. In: van Schoonhoven A, Voyasset O (eds) Common beans: research for crop improvement. CAB International/CIAT, Wallingford/Cali, pp 55–117Google Scholar
  77. Debouck DG (1999) Diversity in Phaseolus species in relation to the common bean. In: Singh SR (ed) Common bean improvement in the 21st century. Kluwer Academic Publisher, Dordrecht, pp 25–52Google Scholar
  78. Debouck DG (2000) Biodiversity, ecology and genetic resources of Phaseolus beans – seven answered and unanswered questions. In: The seventh MAFF international workshop on genetic resources. Wild legumes. National Institute of Agrobiological Resources, Tsukuba, Ibaraki, Japan 1:95–123Google Scholar
  79. Debouck DG, Smartt J (1995) Beans. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, Harlow, pp 287–294Google Scholar
  80. Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ Bot 47:408–423Google Scholar
  81. Delgado-Salinas A (1985) Systematics of the genus Phaseolus (Leguminosae) in North and Central America. Ph.D. dissertation. University of Texas, Austin, p 363Google Scholar
  82. Delgado-Salinas A, Bruneau A, Doyle JJ (1993) Chloroplast DNA phylogenetic studies in New World Phaseolinae (Leguminosae; Papilionoideae; Phaseoleae). Syst Bot 18:6–17Google Scholar
  83. Delgado-Salinas A, Turley T, Richman A, Lavin M (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24:438–460Google Scholar
  84. Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154PubMedGoogle Scholar
  85. Díaz CL, Spaink HP, Kijne JW (2000) Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant Microbe Int 13:268–276Google Scholar
  86. Dickson MH, Boettger MA (1976) Selection for seed quality in white seeded snap bean. Ann Rep Bean Improv Coop 19:24–25Google Scholar
  87. Dickson MA, Boettger MA (1977) Applied selection for mechanical damage resistance in snap bean using the mechanical damage simulator. Ann Rep Bean Improv Coop 20:38–39Google Scholar
  88. Ellis MA, Galvez GE, Sinclair JB (1976) Hongos internalmente portados por la semilla y calidad de la semilla de frijol (Phaseolus vulgaris L.) cosechado en fincas de pequenos agricultores en cuatro departamentos de Colombia. Not Fiopatol 5:79–82Google Scholar
  89. Ellstrand N, Prentice H, Hancock J (1999) Gene flow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563Google Scholar
  90. Escalante AM, Coello G, Eguiarte LE, Piñero D (1994) Genetic structure and mating systems in wild Phaseolus coccineus and P. vulgaris (Fabaceae). Am J Bot 81:1096–1103Google Scholar
  91. Evan AM (1976) Beans. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 168–172Google Scholar
  92. Fairbairn JN (1993) Evaluation of soil, climate and land use information at three scales: the case study of low income bean farming in Latin America. University of Reading, UKGoogle Scholar
  93. Faleiro FG, Ragagnin VA, Moreira MA, Barros EG (2004) Use of molecular markers to accelerate the breeding of common bean lines resistant to rust and anthracnose. Euphytica 183:213–218Google Scholar
  94. Faria JC, Albino MMC, Dias BBA, Cancado LJ, da Cunha NB, Silva LD, Vianna GR, Aragão FJL (2006) Partial resistance to bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Sci 171:565–571Google Scholar
  95. Federici CT, Waines JG (1988) Interspecific hybrid compatibility of selected Phaseolus vulgaris L. lines with Phaseolus acutifolius A. Gray, Phaseolus lunatus L., Phaseolus filiformis Bentham. Ann Rep Bean Improv Coop 31:201–202Google Scholar
  96. Ferreira JJ, Alveraze E, Fueyo MA, Roca A, Giraldez R (2000) Determination of outcrossing rate in Phaseolus vulgaris L. using seed protein markers. Euphytica 113:259–263Google Scholar
  97. Ferreira JL, de Souza C, Eustáquio J, Teixeira Alexsandro L, de Lanes FF, Roberto CP, Aluízio B (2007) Gene flow in common bean (Phaseolus vulgaris L.). Euphytica 153:165–170Google Scholar
  98. Fofana B, Baudoin JP, Vekemans X, Debouck DG, du Jardin P (1999) Molecular evidence for an Andean origin and a secondary gene pool for the Lima bean (Phaseolus lunatus) using chloroplast DNA. Theor Appl Genet 98:202–212Google Scholar
  99. Fofana B, du Jardin P, Baudoin JP (2001) Genetic diversity in the Lima bean (Phaseolus lunatus L.) as revealed by chloroplast DNA (cpDNA) variations. Genet Resour Crop Evol 48:437–445Google Scholar
  100. Foster EF, Pajarito A, Acosta- Gallegos J (1995) Moisture stress impact on N partitioning, N-remobilization and N-use efficiency in beans (Phaseolus vulgaris L). J Agric Sci 124:27–37Google Scholar
  101. Frahm MA, Rosas JC, Mayek-Pérez N, López-Salinas E, Acosta-Gallegos JA, Kelly JD (2004) Breeding beans for resistance to terminal drought in the Lowland tropics. Euphytica 136:223–232Google Scholar
  102. Freyre R, Ríos R, Guzmán L, Debouck D, Gepts P (1996) Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot 50:195–215Google Scholar
  103. Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A et al (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856Google Scholar
  104. Freytag GF, Debouck DG (2002) Taxonomy, distribution and ecology of genus Phaseolus (Leguminosae-Papilionoideae ) in North America, Mexico and Central America. Sida, Botanical Miscellany 23. Botanical Research Institute of Texas [BRIT], Forth Worth, p 298Google Scholar
  105. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136Google Scholar
  106. Galindo L, Blair MW, Beebe S, Ishitani M, Tohme J (2003) Development of a molecular marker: DREB for drought tolerance in common bean. In: Annual report, Biotechnology Research Project, CIAT, Cali, Colombia, pp 177–179Google Scholar
  107. Geerts P (2001) Study of embryo development in Phaseolus in order to obtain interspecific hybrids. Ph.D. thesis. Gembloux Agricultural University, Belgium, p 183Google Scholar
  108. Geerts P, Mergai G, Baudoin JP (1999) Rescue of early heart-shaped embryos and plant regeneration of Phaseolus polyanthus Greenm. and P. vulgaris L. Biotechnol Agron Soc Environ 3(3):141–148Google Scholar
  109. Geerts P, Toussaint A, Mergeai G, Baudoin JP (2002) Study of the early abortion in reciprocal crosses between Phaseolus vulgaris and Phaseolus polyanthus Greenn. Biotechnol Agron Soc Environ 6:109–119Google Scholar
  110. Geffroy V, Sicard D, Oliveira JCF, Sevignac M, Cohen S, Gepts P, Neema C, Langin T, Dron M (1999) Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant-Microbe Inter 12:774–784Google Scholar
  111. Genga AM, Allavena A, Ceriotti A, Bollini R (1992) Genetic transformation in Phaseolus by high-velocity particle microprojectiles. Acta Hortic 300:309–313Google Scholar
  112. Gentry HS (1969) Origin of common bean Phaseolus vulgaris. Econ Bot 23:55–69Google Scholar
  113. Gepts P (1988) A middle American and an Andean common bean gene pool. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer Academic Publishers, Dordrecht, pp 375–390Google Scholar
  114. Gepts P (1988b) Provisional linkage map of common bean. Ann Rep Bean Improv Coop 31:20–25Google Scholar
  115. Gepts P (1998) Origin and evolution of common bean: past events and recent trends. Hortic Sci 33(7):1124–1130Google Scholar
  116. Gepts P (2004) Domestication as a long-term selection experiment. Plant Breed Rev 24:1–44Google Scholar
  117. Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76:447–450Google Scholar
  118. Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris L.) deduced from phaseolin electrophoretic variability, II: Europe and Africa. Econ Bot 42(1):86–104Google Scholar
  119. Gepts P, Debouck D (1991) Origin, domestication and evolution of the common bean (Phaseolus vulgaris L.). In: Van Shoonhoven A, Voysest O (eds) Common beans: research for crop improvement. Commonwealth Agricultural Bureau, Wallingford, pp 7–53Google Scholar
  120. Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Electrophoretic analysis of phaseolin protein variability in wild form and landraces of common bean, Phaseolus vulgaris: evidence for multiple centers of domestication. Econ Bot 40:451–468Google Scholar
  121. Gepts P, Papa R, González A, Acosta J, Delgado-Salinas A (1999) Human effects on Phaseolus vulgaris adaptation during and after domestication. In: Van Raamsdonk LWD, den Nijs JCM (eds) Plant evolution in man-made habitats. Hugo de Vries Laboratory, Amsterdam, pp 161–181Google Scholar
  122. Gepts P, Aragão-Francisco JL, de Barros E, Matthew WB et al (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the Tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, Berlin, pp 113–143Google Scholar
  123. González A, Wong A, Delgado-Salinas A, Papa R, Gepts P (2005) Assessment of inter simple sequence repeat markers to differentiate sympatric wild and domesticated populations of common bean (Phaseolus vulgaris L.). Crop Sci 45:606–615Google Scholar
  124. Gonzalez-Alonso J, Mora-Rodrúguez R, Below PR, Coyle EF (1995) Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. J Appl Physiol 79:1487–1496PubMedGoogle Scholar
  125. Gonzalez-Torres RI (2004) Estimacion de flujo de genes en Phaseolus vulgaris L. mediante marcadores moleculares; Microsatellites y polymorphismo de AND de chloroplasto. Master’s thesis. Universidad Nacional de ColombiaGoogle Scholar
  126. Graham PH, Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crop Res 53:131–146Google Scholar
  127. Graham A, Ramírez M, Valdés-López O, Lara M, Tesfaye M et al (2006) Identification of phosphorus stress induced genes in Phaseolus vulgaris L. through clustering analysis across several species. Funct Plant Biol 33:789–797Google Scholar
  128. Guerra-Sanz JM (2004) New SSR markers of Phaseolus vulgaris from sequence databases. Plant Breed 123:87–89Google Scholar
  129. Guzmán P, Gilbertson RA, Nodari R, Johnson WC, Temple SR, Mandala D, Mkandawire ABC, Gepts P (1995) Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–607Google Scholar
  130. Haghighi KR, Ascher PD (1988) Fertile intermediate hybrid between Phaseolus vulgaris L. and P. acutifolius from congruity backcrossing. Sex Plant Reprod 1:51–58Google Scholar
  131. Hagiwara WE, dos Santos JB, do Carmo LM (2001) Use of RAPD to aid selection in common bean backcross breeding programs. Crop Breed Appl Biotechnol 1:355–362Google Scholar
  132. Hamann A, Zink D, Nagl W (1995) Microsatellite fingerprinting in genus Phaseolus. Genome 38:507–515PubMedGoogle Scholar
  133. Hammer K (1984) Das domestication syndrome. Kulturpflanze 32:11–34Google Scholar
  134. Hardy O, Dubois S, Zoro Bi I, Baudoin JP (1997) Gene dispersal and its consequences on genetic structure of wild populations of Lima bean (Phaseolus lunatus) in Costa Rica. Plant Genet Resour Newsl 109:1–6Google Scholar
  135. Harlan JR (1971) Agricultural origins. Centers and noncenters. Science 174:468–474PubMedGoogle Scholar
  136. Hedrick UP (1931) The vegetable of New York: the beans of New York. Agric Exp Stn Rep 1:1–110, New York (Geneva)Google Scholar
  137. Henikoff S, Till BJ, Comai L (2004) Tilling. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636PubMedPubMedCentralGoogle Scholar
  138. Hermsen JGT (1984) Nature, evolution and breeding of polyploids. Iowa State J Res 58:411–412Google Scholar
  139. Honma S (1956) A bean interspecific hybrid. J Hered 47:217–220Google Scholar
  140. Hoover EE, Brenner ML, Ascher PD (1985) Comparison of development of two bean crosses. Hortic Sci 20:84–86Google Scholar
  141. Hornakova O, Závodná M, Žáková M, Kraic J, Debre F (2003) Diversity of common bean landraces collected in the Western and Eastern Carpatien. Czech J Genet Plant Breed 39(3):73–83.
  142. Hucl P, Scoles GJ (1985) Interspecific hybridization in common bean. A review. Hortic Sci 20:352–357Google Scholar
  143. Ibarra-Pérez F, Ehdaie B, Waines G (1997) Estimation of out-crossing rate in common bean. Crop Sci 37:60–65Google Scholar
  144. Ibrahim AM, Coyne DP (1975) Genetics of stigma shape, cotyledon position and flower color in reciprocal crosses between Phaseolus vulgaris L. × Phaseolus coccineus (Lam.) and implications in breeding. J Am Soc Hortic Sci 100:622–626Google Scholar
  145. Ijani ASM, Mabagala RB, Nchimba-Msolla S (2000) Root-knot nematode species associated with beans and weeds in the Morogoro region, Tanzania. Afr Plant Prot 6:37–41Google Scholar
  146. Ishitani M, Rao I, Wenzl P, Beebe S, Tohme J (2004) Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: drought and aluminum toxicity as case studies. Field Crop Res 90:35–45Google Scholar
  147. Islam FMA, Basford KE, Redden RJ, Jara C, Beebe S (2002) Patterns of resistance to angular leaf spot, anthracnose and common bacterial blight in common bean germplasm. Aust J Exp Agric 42:481–490Google Scholar
  148. Islam FM, Beebe S, Muñoz M, Tohme J, Redden RJ, Basford KE (2004) Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool. Theor Appl Genet 108:243–252PubMedGoogle Scholar
  149. Jaaska V (1996) Isozyme diversity and phylogenetic affinities among the Phaseolus beans (Fabaceae). Plant Syst Evol 200:233–252Google Scholar
  150. Johnson WC, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an Andean × Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica 125:69–79Google Scholar
  151. Johnson WC, Guzmán P, Mandala D, Mkandawire A, Temple S et al (1997) Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37:248–254Google Scholar
  152. Kairaillah MM, Adams MW, Sears BB (1990) Mitochondrial polymorphisms of Malawian bean lines: further evidence for two major gene pools. Theor Appl Genet 80:753–761Google Scholar
  153. Kami J, Becerra V, Debouck DG, Gepts P (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci 92:1101–1104PubMedPubMedCentralGoogle Scholar
  154. Kami J, Poncet V, Geffroy V, Gepts P (2006) Development of four phylogenetically-arrayed BAC libraries and sequence of the APA locus in Phaseolus vulgaris. Theor Appl Genet 112:987–998PubMedGoogle Scholar
  155. Kelly JD (2004) Advances in common bean improvement: some case histories with broader applications. Acta Hortic (ISHS) 637:99–122Google Scholar
  156. Kelly JD, Miklas PN (1998) The role of RAPD markers in breeding for disease resistance in common bean. Mol Breed 4:1–11Google Scholar
  157. Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hortic Sci 39:1196–1207Google Scholar
  158. Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (1999) Registration of ‘Matterhorn’ great northern bean. Crop Sci 39:589–599Google Scholar
  159. Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular-marker assisted selection for traits of economic importance in bean and cowpea. Field Crop Res 82:135–154Google Scholar
  160. Khairallah M, Sears B, Adams M (1992) Mitochondrial restriction fragment length polymorphisms in wild Phaseolus vulgaris L.: insights on the domestication of the common bean. Theor Appl Genet 84:915–922PubMedGoogle Scholar
  161. Kim JW, Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci 117:131–138Google Scholar
  162. Kipe-Nolt JA, Vargas H, Giller KE (1993) Nitrogen fixation in breeding lines of Phaseolus vulgaris L. Plant Soil 152:103–106Google Scholar
  163. Koenig R, Gepts P (1989a) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor Appl Genet 78:809–817PubMedGoogle Scholar
  164. Koenig R, Gepts P (1989b) Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris). J Hered 80:455–459Google Scholar
  165. Koenig R, Singh SP, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 44:50–60Google Scholar
  166. Koinange EMK, Gepts P (1992) Hybrid weakness in wild Phaseolus vulgaris L. J Hered 83:135–139Google Scholar
  167. Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045Google Scholar
  168. Kornegay J, White JW, Ortiz de la Cruz O (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphtyica 62:171–180Google Scholar
  169. Kornegay J, Cardona C, Posso CE (1993) Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33:589–594Google Scholar
  170. Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992PubMedGoogle Scholar
  171. Kwak M, Kami JA, Gepts P (2009) The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico. Crop Sci 49:554–563Google Scholar
  172. Kwapata K, Thang N, Mariam S (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the gus color marker, the bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. Int J Agron. doi: 10.1155/2012/198960
  173. Lackey JA (1983) A review of genetic concepts in American Phaseolinae (Fabaceae, Faboideae). Iselya 2:21–64Google Scholar
  174. Leakey CLA (1988) Genotypic and phenotypic markers in common beans. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, DordrechtGoogle Scholar
  175. Lecomte B, Longly B, Crabbe J, Baudoin JP (1998) Etude comparative du développement de l’ovule chez deux espèces de Phaseolus: P. polyanthus et P. vulgaris. Dévelopement de l’ovule dans le genre Phaseolus. Biotechnol Agron Soc Environ 2(1):77–84Google Scholar
  176. Lentini Z, Debouck DG, Espinoza AM, Arya R (2006) Gene flow analysis into wild/weedy relatives from crops with center of origin/diversity in tropical America. In: Proceedings of the 9th International Symposium on Biosafety of Genetically Modified Organisms (ISBGMO), Jeju Island, South Korea, 24–29 Sept 2006 (International Society for Biosafety Research [ISBR] n.p.), pp 152–156.
  177. Liaca V, Delgado SA, Gepts P (1994) Chloroplast DNA as evolutionary marker in the Phaseolus vulgaris complex. Theor Appl Genet 88:642–652Google Scholar
  178. Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:1–12Google Scholar
  179. Liebman M, Roew RJ, Corson S, Marra MC, Honeycutt CW, Murphy BA (1993) Agronomic and economic performance of conventional vs reduced input bean cropping systems. J Prod Agric 6:369–378Google Scholar
  180. Liebman M, Corson S, Rowe RJ, Halteman WA (1995) Dry bean response to nitrogen fertilizer in two tillage and residue management systems. Agron J 87:538–546Google Scholar
  181. Lioi L (1989) Geographical variation of phaseolin patterns in an old world collection of Phaseolus vulgaris. Seed Sci Technol 17:317–324Google Scholar
  182. Liu ZC, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L) with lea gene. Mol Breed 16:189–197Google Scholar
  183. López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E et al (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95PubMedGoogle Scholar
  184. MacBryde FW (1947) Cultural and historical geography of southwest Guatemala, Publication no. 4. Institute of Social Anthropology, Smithsonian Institution, Washington, DC, p 25Google Scholar
  185. Mahuku GS, Riascos JJ (2004) Virulence and molecular diversity within Colletotrichum lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. Eur J Plant Pathol 110:253–263Google Scholar
  186. Manshardt RM, Bassett MJ (1984) Inheritance of stigma position in Phaseolus vulgaris × Phaseolus coccineus hybrid populations. J Hered 75:45–50Google Scholar
  187. Maquet A, Vekemans X, Baudoin JP (1999) Phylogenetic study on wild allies of Lima bean and implication on its origin. Plant Syst Evol 218:43–54Google Scholar
  188. Maquet A, Masumboko B, Ouedraogo M, Zoro Bi I, Badoin JP (2001) Estimation of gene flow among wild populations of Phaseolus lunatus L. using isozyme markers. Ann Rep Bean Improv Coop 44:27–28Google Scholar
  189. Marechal R (1971) Observations sur quelques hybrids dans le genre Phaseolus, II : les phenomenes meiotiques. Bull Rech Agron Gembloux 6:461–489Google Scholar
  190. Marechal R, Mascherpa J, Stanier F (1978) Etude taxonomique d’un groupe complexe d’especes des genres Phaseolus et Vigna (Papilionaceae) sur la base de donnees morphologiques et polliniques, traitees par l/analyse informatique. Memories des Conservatoire et Jardin Botaniques de la Ville de Geneve. Boissiera, Geneva 28:1–273Google Scholar
  191. Martinez-Castillo J, Zuzumbo- Villarreal D, Gepts P, Colunga Garcia–Marin P (2007) Gene flow and genetic structure in the wild-weedy –domesticated complexes of Phaseolus lunatus in its Mesoamerican centre of domestication and diversity. Crop Sci 47:58–66Google Scholar
  192. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442PubMedPubMedCentralGoogle Scholar
  193. McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152PubMedGoogle Scholar
  194. McClean PE, Terpstra J, McConnell M, White C, Lee R, Mamidi S (2012) Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genet Resour Crop Evol 59:499–515Google Scholar
  195. Melotto M, Coelho MF, Pedrosa-Harand A, Kelly JD, Camargo LEA (2004) The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes. Theor Appl Genet 109:690–699PubMedGoogle Scholar
  196. Melotto M, Monteiro-Vitorello CB, Bruschi AG, Camargo LEA (2005) Comparative bioinformatics analysis of genes expressed in common bean (Phaseolus vulgaris L.) seedlings. Genome 48:562–570PubMedGoogle Scholar
  197. Menjia-Jimenez A, Munoz C, Jacobsen HJ, Roca WM, Singh SP (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility and efficiency of hybridization through recurrent and congruity back crossing. Theor Appl Genet 88:324–331Google Scholar
  198. Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352PubMedGoogle Scholar
  199. Mienie C, Liebenberg M, Pretorius Z, Miklas P (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111:972–979PubMedGoogle Scholar
  200. Miklas P (2000) Use of Phaseolus germplasm in breeding pinto great northern and red bean for pacific, north west and inter mountain regions. In: Bean research products and utilization. Proceedings of Idaho bean workshop, Idaho University, RussiaGoogle Scholar
  201. Miklas PN (2005) List of SCAR marker for disease resistance: Aug 2005 update
  202. Miklas PN, Singh SP (2007) Common bean. In: Kole C (ed) Genome mapping and molecular breeding in plants. Berlin: Pulses, sugar and tuber crops. Springer 1:1–31Google Scholar
  203. Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85:745–749PubMedGoogle Scholar
  204. Miklas PN, Johnson WC, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci 41:309–315Google Scholar
  205. Miklas PN, Hu J, Grünwald NJ, Larsen KM (2006a) Potential application of TRAP (Targeted Region Amplified Polymorphism) markers for mapping and tagging disease resistance traits in common bean. Crop Sci 46:910–916Google Scholar
  206. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006b) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131Google Scholar
  207. Mkandawire ABC, Mabagala RB, Guzman P, Gepts P, Gilbertson RL (2004) Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. Phaseoli and X. campestris pv. phaseoli var. fuscans) suggests coevolution with the common bean. Phytopathology 94:593–603PubMedGoogle Scholar
  208. Mmbaga M, Steadman JR, Stavely JR (1996) The use of host resistance in disease management of rust in common bean. Integr Pest Manag Rev 1:191–200Google Scholar
  209. Mumba LE, Galwey NW (1998) Compatibility of crosses between gene pools and evolutionary classes in common bean (Phaseolus vulgaris L.). Genet Resour Crop Evol 45:69–80Google Scholar
  210. Mumba LE, Galwey NW (1999) Compatibility between wild and cultivated common bean (Phaseolus vulgaris L.) genotypes of the Mesoamerican and Andean gene pools: evidence from the inheritance of quantitative characters. Euphytica 108:105–119Google Scholar
  211. Munoz LC, Baudoin JP (1994) Influence of cold pretreatment and carbon source on callus induction from anthers in Phaseolus. Ann Rep Bean Improv Coop 37:129–130Google Scholar
  212. Munoz LC, Baudoin JP (2002) Improvement of in vitro induction of androgenesis in Phaseolus beans (P. vulgaris L. and P. coccineus L.). Acta Agron 51:81–87Google Scholar
  213. Munoz LC, Baudoin JP, Bradfer C (1993) In-vitro induction of androgenesis in Phaseolus. Ann Rep Bean Improv Coop 36:18–19Google Scholar
  214. Munoz-Florez LC, Baudoin JP (1994) Anther culture in some Phaseolus species. In: Roca WM, Mayer JE, Pastor CMA, Tohme MJ (eds) Proceedings of the international scientific meeting of the Phaseolus Bean Advanced Biotechnology Research Network, Cali, Colombia, February 1993. Centro Internacional de Agricultura Tropical (CIAT), Colombia, pp 205–212Google Scholar
  215. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  216. Murray J, Larsen J, Michaels TE, Schaafsma A, Vallejos CE et al (2002) Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs. Genome 45:1013–1024PubMedGoogle Scholar
  217. Mutlu N, Miklas PN, Coyne DP (2006) Resistance gene analog polymorphism (RGAP) markers co-localize with disease resistance genes and QTL in common bean. Mol Breed 17:127–135Google Scholar
  218. Nandakumar PBA, Shivanna KR (1993) Intergeneric hybridization between Diplotaxis siettiana and crop brassicas for production of alloplasmic lines. Theor Appl Genet 85:770–776Google Scholar
  219. Navarro F, Sass M, Nienhuis J (2003) Identification and mapping bean root rot resistance in a population of Mesoamerican × Andean origin. Ann Rep Bean Improv Coop 46:213–214Google Scholar
  220. Negri V, Maxted N, Vetelainen M (2009) European landrace conservation: an introduction. In: Vetelainen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity International, Rome, pp 1–22Google Scholar
  221. Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993a) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520PubMedGoogle Scholar
  222. Nodari RO, Tsai SM, Guzmán P, Gilbertson RL, Gepts P (1993b) Towards an integrated linkage map of common bean. 3. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350PubMedPubMedCentralGoogle Scholar
  223. Ocampo CH, Martin JP, Sanchez- Yelamo MD, Ortiz JM, Toro O (2005) Tracing the origin of spanish common bean cultivars sing biochemical and molecular markers. Genet Resour Crop Evol 52:33–40Google Scholar
  224. Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621. doi: 10.2135/cropsci2005.12-0446 Google Scholar
  225. Ockendon DJ, Currah L, Taylor JD (1982) Transfer of resistance to halo blight (Pseudomonas phaseolicola) from Phaseolus vulgaris to Phaseolus coccineus. Ann Rep Bean Improv Coop 25:84–85Google Scholar
  226. Ortwin-Sauer C (1966) The early Spanish man. University of California Press, BerkeleyGoogle Scholar
  227. Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science (Wash) 240:207–210Google Scholar
  228. Ouedraogo M, Baudoin JP (2002) Comparative analysis of genetic structure and diversity of wild lima bean populations from Central Valley of Costa Rica, using microsatellite and isozyme markers. Ann Rep Bean Improv Coop 45:240–241Google Scholar
  229. Papa R, Gepts P (2004) Asymmetric gene flow and introgression between wild and domesticated populations. In: dens Nijz HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants to wild relatives. CAB International, Wallingford, pp 125–138Google Scholar
  230. Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250PubMedGoogle Scholar
  231. Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158PubMedGoogle Scholar
  232. Parker JP, Michaels TE (1986) Simple genetic control of hybrid plant development in interspecific crosses between Phaseolus vulgaris and Phaseolus acutifolius A. Gray. Plant Breed 97:315–323Google Scholar
  233. Pastor-Corrales MA, Jara C (1995) La evolución de Phaeoisariopsis griseola con el frijol común en América Latina. Fitopatol Colomb 19:15–24Google Scholar
  234. Pathania A, Sharma PN, Sharma OP, Chahota RK, Ahmad B, Sharma P (2006) Evaluation of resistance sources and genetics of resistance in kidney bean to Indian virulences of Colletotrichum lindemuthianum. Euphytica 149:97–103Google Scholar
  235. Payro de la Cruz E, Gepts P, Colunga Garcia-Marin P, Zizumbo Villareal D (2005) Spatial distribution of genetic diversity in wild populations of Phaseolus vulgaris L. from Guanajuato and Michoacán, Mexico. Genet Res Crop Evol 52:589–599Google Scholar
  236. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871PubMedPubMedCentralGoogle Scholar
  237. Peters JE, Crocomo OJ, Sharp WR, Paddock EF, Tegenkamp I, Tegenkamp T (1977) Haploid callus cells from anthers of Phaseolus vulgaris. Phytomorphology 27:79–85Google Scholar
  238. Polegri L, Negri V (2010) Molecular markers for promoting agrobiodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet Resour Crop Evol 57:867–880Google Scholar
  239. Pratt RC, Bresssan RA, Hasegawa PM (1985) Genotypic diversity enhance recovery of hybrids and fertile backcrosses of Phaseolus vulgaris L. × P. acutifolius A. Gray. Euphytica 34:329–344Google Scholar
  240. Prendota K, Baudoin JP, Marechal R (1982) Fertile allopolyploids from cross the Phaseolus acutifolius × Phaseolus vulgaris. Bull Rech Agron Gembloux 17:177–189Google Scholar
  241. Pueyo JJ, Delgado-Salinas A (1997) Presence of alpha-amylase inhibitor in some members of the subtribe Phaseolinae (Phaseoleae = Fabaceae). Am J Bot 84:79–84Google Scholar
  242. Purseglove JW (1976) The origin and migrations of crops in tropical Africa. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origin of African plant domestication. Mouton, The Hague, pp 293–309Google Scholar
  243. Ragagnin VA, Alzate-Marin AL, Souza TLPO, Sanglard DA, Moreira MA et al (2005) Use of molecular markers to pyramiding multiple genes for resistance to rust, anthracnose and angular leaf spot in the common bean. Ann Rep Bean Improv Coop 48:94–95Google Scholar
  244. Raggi L, Barbara T, Negri V (2013) Italian common bean landraces: diversity and population structure. Genet Resour Crop Evol 60:1515–1530Google Scholar
  245. Ramírez M, Graham MA, Blanco-López L, Silvente S, Medrano-Soto A et al (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227PubMedPubMedCentralGoogle Scholar
  246. Ramirez-Vallejo P, Kelly JD (1998) Traits related to drought resistance in common bean. Euphytica 99:127–136Google Scholar
  247. Rao IM (2001) Role of physiology in improving crop adaptation to abiotic stresses in the tropics: the case of common bean and tropical forages. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 583–613Google Scholar
  248. Rodriguez-Guerra R, Ramirez-Rueda MT, Martinez de laVega O, Simpson J (2003) Variation in genotype, pathotype and anastomosis groups of Colletotrichum lindemuthianum isolates from Mexico. Plant Pathol 52:228–235Google Scholar
  249. Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-Lopez C, Ortiz- Cereceres J, Kelly JD (2004) Biomass distribution, maturity acceleration and yield in drought stressed common bean cultivars. Field Crop Res 85:203–211Google Scholar
  250. Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522PubMedCentralGoogle Scholar
  251. Russell DR, Wallace KM, Bathe JH, Martinell BJ (1993) Stable transformation of Phaseolus vulgaris via electric discharge mediated particle acceleration. Plant Cell Rep 12:165–169PubMedGoogle Scholar
  252. Sabja AM, Mok DWS, Mok MC (1990) Seed and embryo growth in pod cultures of Phaseolus vulgaris and P. vulgaris × P. acutifolius. Hortic Sci 25(10):1288–1291Google Scholar
  253. Sandlin CM, Steadman JR, Araya CM, Coyne DP (1999) Isolates of Uromyces appendiculatus with specific virulence to landraces of Phaseolus vulgaris of Andean origin. Plant Dis 83:108–113Google Scholar
  254. Santalla M, Rodino AP, de Ron AM (2002) Allozyme evidence supporting Southwestern Europe as a secondary center of genetic diversity for the common bean. Theor Appl Genet 104:34–944Google Scholar
  255. Schmit V, Baudoin JP (1992) Screening for resistance to Ascochyta blight in populations of P. coccineus L. and P. polyanthus Greenman. Field Crop Res 30:155–165Google Scholar
  256. Schmit V, du Jardin P, Baudoin JP, Debouck DG (1993) Use of chloroplast DNA polymorphism for the phylogenetic study of seven Phaseolus taxa including P. vulgaris and P. coccineus. Theor Appl Genet 87:506–516PubMedGoogle Scholar
  257. Schmit V, Muñoz JE, du Jardin P, Baudoin JP, Debouck DG (1995) Phylogenetic studies of some Phaseolus taxa on the basis of chloroplast DNA polymorphisms. In: Roca WM, Mayer JE, Pastor-Corrales MA, Tohme J (eds) Phaseolus beans advanced biotechnology research network Proceedings of the second international scientific meeting, CIAT, Cali, Colombia, 7–10 Sept 1993, pp 69–75Google Scholar
  258. Schneider KA, Rosales-Serna R, Ibarra-Pérez FB, Cazares-Enriquez JA, Gallegos A, Ramirez-Vallejo P, Wassimi N, Kelly JD (1997) Improving common bean performance under drought stress. Crop Sci 37:43–50Google Scholar
  259. Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542Google Scholar
  260. Schwartz HF, Pastor-Corraies MA (1989) Bean production problems in the tropics, 2nd edn. CIAT, CaliGoogle Scholar
  261. Schwartz HF, Peairs FB, Hall R (1999) Integrated pest management. Common bean improvement in the twenty-first century. Kluwer Academic Press, Dordrecht, pp 371–388Google Scholar
  262. Schwartz HF, Steadman JR, Hall R, Forster RL (2005) Compendium of bean diseases, 2nd edn. APS Press, St. Paul, p 109Google Scholar
  263. Sharma PN, Kumar A, Sharma OP, Sud D, Tyagi PD (1999) Pathogenic variability in Colletotrichum lindemuthianum and evaluation of resistance in Phaseolus vulgaris in the north-western Himalayan region of India. J Phytopathol 147:41–45Google Scholar
  264. Sharma TR, Rana JC, Sharma R, Rathour R, Sharma PN (2006) Genetic diversity analysis of exotic and Indian accessions of common bean (Phaseolus vulgaris L.) using RAPD markers. Indian J Genet 66(4): 275–278Google Scholar
  265. Sharma PN, Bilal A, Sharma OP, Pathania A, Sharma P (2007) Pathological and molecular diversity in Colletotrichum lindemuthianum (bean anthracnose) across Himachal Pradesh- a north-western Himalayan state of India. Australas Plant Pathol 36:191–197Google Scholar
  266. Sharma PN, Diaz LM, Blair MW (2013) Genetic diversity of two Indian common bean germplasm collections based on morphological and microsatellite markers. Plant Genet Resour 11:121–130Google Scholar
  267. Shii CT, Mok MC, Temple SR, Mok DWS (1980) Expression of developmental abnormalities in hybrid of Phaseolus vulgaris L. interaction between temperature and allelic dosage. J Hered 71(4):218–222Google Scholar
  268. Singh SP (1982) A key for identification of different growth habits of frijol Phaseolus vulgaris L. Ann Rep Bean Improv Coop 25:92–95Google Scholar
  269. Singh SP (1989) Pattern of variation in cultivated common beans (Phaseolus vulgaris Fabaceae). Econ Bot 43:39–57Google Scholar
  270. Singh SP (1991) Bean genetics. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, Wallingford, pp 199–286Google Scholar
  271. Singh SP (1999) Integrated genetic improvement. In: Singh SP (ed) Common bean improvement in the 21st century. Kluwer Academic Publishers, Dordrecht, pp 133–165Google Scholar
  272. Singh SP (2001) Broadening the genetic base of common bean cultivars. Crop Sci 41:1659–1675Google Scholar
  273. Singh SP, Gutierrez JA (1984) Geographical distribution of DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L. their association with seed size and their significance in breeding. Euphytica 33(2):337–345Google Scholar
  274. Singh SP, Molina A (1996) Inheritance of crippled trifoliate leaves occurring in interracial crosses of common bean and its relationship with hybrid dwarfism. J Hered 87(6):464–469Google Scholar
  275. Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223Google Scholar
  276. Singh SP, Schwartz HF (2011) Review: breeding common bean for resistance to insect pests and nematodes. Can J Plant Sci 91:239–250Google Scholar
  277. Singh SP, Gepts P, Debouck DG (1991a) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396Google Scholar
  278. Singh SP, Gutierrez A, Molina A, Urrea C, Gepts P (1991b) Genetic diversity in cultivated common bean: II Marker- based analysis of morphological and agronomic traits. Crop Sci 31:23–29Google Scholar
  279. Singh SP, Nodari R, Gepts P (1991c) Genetic diversity in cultivated common beans. I. Allozymes. Crop Sci 31:19–23Google Scholar
  280. Singh SP, Debouck DG, Roca WM (1997) Successful interspecific hybridization between Phaseolus vulgaris L. and Phaseolus costaricensis Freytag & Debouck. Ann Rep Bean Improv Coop 40:40–41Google Scholar
  281. Singh SP, Cardona C, Morales FJ, Pastor-Corrales MA, Voysest O (1998) Gamete selection for upright carioca bean with resistance to five diseases and a leafhopper. Crop Sci 38:666–672Google Scholar
  282. Singh SP, Terán H, Muñoz CG, Takegami JC (1999) Two cycles of recurrent selection for seed yield in common bean. Crop Sci 39:391–397Google Scholar
  283. Singh SP, Muñoz CG, Terán H (2001a) Registration of common bacterial blight resistant dry bean germplasm VAX 1, VAX 3, and VAX 4. Crop Sci 41:275–276Google Scholar
  284. Singh SP, Terán H, Gutiérrez JA (2001b) Registration of SEA 5 and SEA 13 drought tolerant dry bean germplasm. Crop Sci 41:276–277Google Scholar
  285. Smartt J (1970) Interspecific hybridization between cultivated American species of the genus Phaseolus. Euphytica 19:480–488Google Scholar
  286. Smartt J (1979) Interspecific hybridization in grain legumes: a review. Econ Bot 33:329–337Google Scholar
  287. Smartt J (1990) Grain legumes. Evolution and genetic resources. Cambridge University Press, Cambridge, p 379Google Scholar
  288. Smartt J, Haq N (1972) Fertility and segregation of amphidiploid Phaseolus vulgaris L. × Phaseolus coccineus L. and its behaviour in backcrosses. Euphytica 21:496–591Google Scholar
  289. Snoeck C, Vanderleyden J, Beebe S (2003) Strategies for genetic improvement of common bean and rhizobia towards efficient interactions. Plant Breed Rev 23:21–72Google Scholar
  290. Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635PubMedGoogle Scholar
  291. Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25:249–257Google Scholar
  292. Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147Google Scholar
  293. Sullivan JG, Freytag G (1986) Predicting interspecific compatibilities in beans (Phaseolus) by seed protein electrophoresis. Euphytica 35:201–209Google Scholar
  294. Tai KS, Cheng SH (1990) Tissue culture of cultivated Leguminosae. J Agric Assoc China 149:49–52Google Scholar
  295. Tanksley SD, Nelson JC (1996) Advanced back cross QTL analysis, a method for the simultaneously discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203PubMedGoogle Scholar
  296. Tapia H, Comacho A (1988) Manejo Integrado de la Produccion de Frijol Basado en Labranza Zero. GTZ, EschbornGoogle Scholar
  297. Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556Google Scholar
  298. Terán H, Singh SP (2009) Gamete selection for improving physiological resistance to white mold in common bean. Euphytica 167:271–280Google Scholar
  299. Terán H, Singh SP (2010a) Recurrent selection for physiological resistance to white mold in dry bean. Plant Breed 129:327–333Google Scholar
  300. Terán H, Singh SP (2010b) Gamete and recurrent selection for improving physiological resistance to white mold in common bean. Can J Plant Sci 90:153–162Google Scholar
  301. Thomas CV, Waines JG (1984) Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans (Phaseolus acutifolius, Phaseolus vulgaris). J Hered 75:93–98Google Scholar
  302. Thung M (1990) Phosphorus: a limiting nutrient in bean (Phaseolus vulgaris L.) production in Latin America and field screening for efficiency and response. In: El Bassam N, Dambrooth M, Loughman BG (eds) Genetic aspects of plant mineral nutrition. Kluwer, Dordrecht, pp 501–521Google Scholar
  303. Thung MDT, Rao I (1999) Integrated management of abiotic stresses. In: Singh SP (ed) Common bean improvement in twenty first century. Kluwer, Dordrecht, pp 331–370Google Scholar
  304. Thurston HD (1992) Sustainable practices for plant disease management in traditional farming systems. Westview Press, BoulderGoogle Scholar
  305. Tohme J, González O, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384Google Scholar
  306. Toro O, Tohme J, Debouck DG (1990) Wild bean (Phaseolus vulgaris L): description and distribution. Centro Internacional de Agricultura Tropical, CaliGoogle Scholar
  307. Tsai SM, Nodari RO, Moon DH, Camargo LEA, Vencovsky R, Gepts P (1998) QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant Soil 204:135–145Google Scholar
  308. Tseng TC, Tu JC, Sot LC (1995a) Comparison of the profiles of seed-borne fungi and the occurrence of aflatoxins in mold-damaged beans and soybeans. Microbios 84:105–116PubMedGoogle Scholar
  309. Tseng TC, Tu JC, Tsean SS (1995b) Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Bot Bull Acad Sin 36:229–234Google Scholar
  310. Urrea C, Miklas P, Beaver J, Riley R (1996) A codominant randomly amplified polymorphic DNA (RAPD) marker useful for indirect selection of bean golden mosaic virus resistance in common bean. J Am Soc Hortic Sci 121:1035–1039Google Scholar
  311. Vadez V, Lasso JH, Beck DP, Drevon JJ (1999) Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency: N2-fixation tolerant to P deficiency. Euphytica 106:231–242Google Scholar
  312. Vallejos CE, Chase CD (1991) Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor Appl Genet 81:413–419PubMedGoogle Scholar
  313. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740PubMedPubMedCentralGoogle Scholar
  314. Van de Velde W, Mergeay J, Holsters M, Goormachtig S (2003) Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Sci 165:1281–1288Google Scholar
  315. van Reheenen HA, Muigai SGS, Kitivo DK (1979) Male sterility in beans (Phaseolus vulgaris L.). Euphytica 28:761–763Google Scholar
  316. van Schoonhoven A, Pastor-Corrales MA (1987) Standard system for the evaluation of bean germplasm. CIAT, Cali, p 53Google Scholar
  317. Vekemans X, Hardy O, Berken B, Fofana B, Baudoin JP (1998) Use of PCR- RFLP on chloroplast DNA to investigate the phylogenetic relationships in the genus Phaseolus. Biotechnol Agro Soc Environ 2:128–134Google Scholar
  318. Verdecourt B (1970) Studies in the Leguminosae-Papilionoideae for the flora of tropical East Africa. IV. Kew Bull 24:507–569Google Scholar
  319. Vianna GR, Albino MMC, Dias BBA, Silva LDM, Rech EL, Aragão FJL (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci Hortic 99:371–378, AmsterdamGoogle Scholar
  320. Vieira AL, Patto Ramalho MA, dos Santos JB (1989) Crossing incompatibility in some bean cultivars utilized in Brazil. Rev Brasil Genet 12:169–171Google Scholar
  321. Wallace DH, Wilkinson RE (1975) Breeding for resistance in dicotyledonous plants to root rot fungi. In: Bruehll GW (ed) Biology and control of soil-borne plant pathogens. American Phytopathological Society, St. PaulGoogle Scholar
  322. Weilenmann E, Baudoin JP, Maréchal R (1986) Obtention d’allopolyploides fertiles chez le croisement entre Phaseolus vulgaris et Phaseolus filiformis. Bull Rech Agron Gembloux 21(1):35–46Google Scholar
  323. Welsh W, Bushuk W, Roca W, Singh SP (1995) Characterization of agronomic traits and markers of recombinant inbred lines from intraracial and interracial populations of Phaseolus vulgaris. Theor Appl Genet 91:169–177PubMedGoogle Scholar
  324. White JW (1987) Preliminary results of the Bean International Drought Yield Trial (BIDYT). In: Proceedings of the international bean drought workshop, Cali, Colombia, 19–21 Oct 1987, pp 126–145Google Scholar
  325. White JW, Singh SP (1991) Breeding for adaptation to drought. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International/CIAT, Wallingford/Cali, pp 501–551Google Scholar
  326. White JW, Ochoa R, Ibarra F, Singh SP (1994) Inheritance of seed yield, maturity and seed weight of common bean (Phaseolus vulgaris L.) under semi-arid rainfed conditions. J Agric Sci 122:265–273Google Scholar
  327. Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT Pan-African Bean Research Alliance, CaliGoogle Scholar
  328. Yaish MWF, de la Vega MP (2003) Isolation of (GA)(n) microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (Phaseolus vulgaris L.). Genet Mol Biol 26:337–342Google Scholar
  329. Yan X, Beebe SE, Lynch JP (1995a) Genetic variation for phosphorus efficiency of common bean in contrasting soil types. II. Yield response. Crop Sci 35:1094–1099Google Scholar
  330. Yan X, Lynch JP, Beebe SE (1995b) Genetic variation for phosphorus efficiency of common bean in contrasting soil types. I. Vegetative response. Crop Sci 35:1086–1093Google Scholar
  331. Yan X, Lynch JP, Beebe SE (1996) Utilization of phosphorus substrates contrasting common bean genotypes. Crop Sci 36:936–941Google Scholar
  332. Yan X, Liao H, Trull MC, Beebe SE, Lynch JP (2001) Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Phys 125:1–11Google Scholar
  333. Young R, Melotto M, Nodari R, Kelly JD (1998) Marker-assisted dissection of the oligogenic anthracnose resistance in the common bean cultivars, ‘G 2333’. Theor Appl Genet 96:87–94Google Scholar
  334. Yu K, Park S, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434PubMedGoogle Scholar
  335. Zagorcheva L, Poriazov I (1983) Hybrid development and fertility in Phaseolus vulgaris × Phaseolus coccineus. Ann Rep Bean Improv Coop 26:92–93Google Scholar
  336. Zambre M, Goossens A, Cardona C, Van Montagu M, Terryn N et al (2005) A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil. Theor Appl Genet 110:914–924PubMedGoogle Scholar
  337. Zhang ZY, Coyne DP, Mitra A (1997) Factors affecting Agrobacterium-mediated transformation of common bean. J Am Soc Hortic Sci 122:300–305Google Scholar
  338. Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–640PubMedGoogle Scholar
  339. Zizumbo-Villarreal D, Colunga-Garcý´a Marý´n P, Payró de la Cruz E, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Mountain Agriculture Research and Extension Centre SanglaKinnaurIndia
  2. 2.Department of Plant Pathology, CSKHimachal Pradesh Agricutlural UniversityPalampurIndia

Personalised recommendations