Design and Simulation of CNTFET by Varying the Position of Vacancy Defect in Channel

  • Shreekant
  • Sudhanshu Choudhary
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 308)


In this paper, we investigate the effect of vacancy defects in carbon nanotube field effect transistor (CNTFET) by applying the self-consistent solution of the Schrodinger and Poisson equations within the non-equilibrium Green’s function (NEGF) formalism and calculated its characteristics by creating vacancies at different positions in the CNTFET channel. It has been observed that due to the creation of vacancy defects in the channel region of the CNTFET, the ON-current increases and OFF-current decreases in comparison to non-defective channel CNTFET. The results show that single, double, and triple vacancies have a very minor effect on the CNTFET conductivity. However, a huge reduction in CNTFET conductivity was observed when the density of vacancy defects in the channel was increased.


Carbon nanotube CNTFET Zigzag Defects Vacancy Non-equilibrium Green’s function (NEGF) 


  1. 1.
    Mintmire, J.W., Dunlap, B., White, C.: Universal density of states for CNTs. Phys. Rev. Lett. 68, 631 (1992)CrossRefGoogle Scholar
  2. 2.
    Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Caron nanotubes: synthesis, Structure properties, and applications. Appl. Phys. 60, 2204 (1992)Google Scholar
  3. 3.
    Dekker, C., Tans, S.J., Verschueren, A.R.M.: Nature 393 (6680), 49 (1998). doi:  10.1038/29954
  4. 4.
    Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors. P.h. (1998). doi:  10.1063/1.122477
  5. 5.
    Choudhary, S., Saini, S. Qureshi.: Modern physics letters B 28(2) (2014) (9 pages) 1450007. doi:  10.1142/S0217984914500079
  6. 6.
    Seidal, R., et al.: High-current nanotube transistors. Nano Lett. 4(5), 831–834 (2004)CrossRefGoogle Scholar
  7. 7.
    Knoch, J., Appenzellert, J.: A novel concept for field effect transistors—the tunneling Carbon nanotube FET. In: IEEE Device Research Conference USA, 1, June (2005), pp. 153–156Google Scholar
  8. 8.
    Ijima, S.: Carbon Nanotubes. Pergamon Press (1996)Google Scholar
  9. 9.
    Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. In: Proceedings of the IEEE, 91: 1772–1784 (2003)Google Scholar
  10. 10.
    McEuen, P.L., Fuhrer, M.S., Park, H.K.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)CrossRefGoogle Scholar
  11. 11.
    Pourfath, M., Ungersboek, E., Gehring, A., Cheong, B.H., Park, W., et al.: Improving the ambipolar behavior of schottky barrier carbon nanotube field effect transistors. In: Proceedings ESSDERC pp. 429–432 (2004)Google Scholar
  12. 12.
    Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 5, 253–278 (2000)CrossRefGoogle Scholar
  13. 13.
    Fiori, G., Iannaccone, G., Klimeck, G.: A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Elec. Dev. 53(8): 1782–1788 (2006)Google Scholar
  14. 14.
    Fiori, G., Iannaccone, G., Klimeck, G.: Coupled mode space approach for the simulation of realistic carbon nanotube field-effect transistors. IEEE Trans. Nanotechnol. 6(4): 475–480 (2007)Google Scholar
  15. 15.
    Yoon, Y., Fiori, G., Hong, S., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with schottky contacts an dopped reservoirs. IEEE Trans. Elec. Dev. 55(9):2314–2323 sept (2008)Google Scholar
  16. 16.
    Shim, M., Javey, A., Kam, N.W.S, Dai, H.: Polymer functionalization of air-stable n-type carbon nanotube field effect transistors. J. Amer. Chem. Soc. 123: 11512–11513 (2001)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.School of VLSI Design and Embedded System DesignNIT KurukshetraKurukshetraIndia

Personalised recommendations