Ultra high-Speed InAlAs/InGaAs High Electron Mobility Transistor

  • Meryleen Mohapatra
  • Nutan Shukla
  • A.K. Panda
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 308)


This work deals with the performance evaluation and characterization of an InAlAs/InGaAs-based high electron mobility transistor with different gate lengths viz. 50, 35, and 15 nm. A maximum drain current (I dss) of 398 mA/mm is achieved for a 15-nm-gate-length device with a V ds of 0.4 V as compared to 50- and 35-nm-gate-length HEMT with a current of 368 mA/mm and 384 mA/mm, respectively. A cutoff frequency (f T ) of 1.3 THz is reported for a 15 nm gate length, while a cutoff frequency of 625 GHz and 1.05 THz has been obtained for 50- and 35-nm-gate-length devices. The increase in cutoff frequency for a 15-nm-gate-length InAlAs/InGaAs-based HEMT results due to the decrease in transit time. A maximum oscillation frequency (f max) of 1.8 THz has been obtained for a 15-nm-gate-length device whereas a f max of 1.35 and 1.58 THz has been achieved for a 50- and 35-nm-gate-length HEMT. So, the device with ultrashort gate length performs better as compared to other two gate length devices.


Ultrashort gate length Pseudomorphic HEMT InAlAs InGaAs 


  1. 1.
    Tessmann, A.: 220-GHz metamorphic HEMT amplifier MMICs for high resolution imaging applications. IEEE J. Solid-State Circuits. 40, 2070–2076 (2005)Google Scholar
  2. 2.
    Ayubi-Moak, J.S., Ferry, D.K., Goodnick, S.M., Akis, R., Saraniti, M.: Simulation of ultrasubmicrometer-gate In0.52Al0.48As/In0.75Ga0.25As/In0.52Al0.48As/InP pseudomorphic HEMTs using a full-band Monte carlo simulator. IEEE Trans. Electron. Devices 54, 2327–2338 (2007)Google Scholar
  3. 3.
    Nguyen, L.D., Brown, A.S., Thompson, M.A., Jelloian, L.M.: 50-nm self-aligned-gate pseudomorphic AlInAs/ GaInAs high electron mobility transistors. IEEE Trans. Electron. Devices 39, 2007–2014 (1992)Google Scholar
  4. 4.
    Endoh, A., Yamashita, Y., Higashiwaki, M., Hikosaka, K., Mimura, T., Hiyamizu, S., Matsui, T.: High fT 50-nm- gate lattice-matched InAlAs/InGaAs HEMTs, pp. 87–90. IEEE, New York (2000)Google Scholar
  5. 5.
    Mei, X.B., Yoshida, W., Deal, W.R., Liu, P.H., Lee, J., Uyeda, J., Dang, L., Wang, J., Liu, W., Li, D., Barsky, M., Kim, Y.M., Lange, M., Chin, T.P., Radisic, V., Gaier, T., Fung, A., Samoska, L., Lai, R.: 35-nm InP HEMT SMMIC amplifier with 4.4-dB Gain at 308 GHz. IEEE Electron. Device Lett. 28, 470–472 (2007)Google Scholar
  6. 6.
    Shinohara, K., Yamashita, Y., Endoh, A., Hikosaka, K., Matsui, T., Mimura, T., Hiyamizd, S.: InP-based HEMTs with a cutoff frequency higher than 450 GHz, pp. 166–169 (2002)Google Scholar
  7. 7.
    Shinohara, K., Yamashita, Y., Endoh, A., Watanabe, I., Hikosaka, K., Mimura, T., Hiyamizu, S., Matsui, T.: 550 GHz-fT, pseudomorphic InP-HEMTs with reduced source-drain resistance, pp. 145–146. IEEE, New York (2003)Google Scholar
  8. 8.
    Yamashita, Y., Endoh, A., Shinohara, K., Higashiwaki, M., Hikosaka, K., Mimura, T., Hiyamizu, S., Matsui, T.: Ultra-short 25-nm-gate lattice-matched InAlAs/InGaAs HEMTs within the range of 400 GHz cutoff frequency. IEEE Electron Device Lett. 22, 367–369 (2001)Google Scholar
  9. 9.
    Yeon, S.J., Park, M., Choil, J., Seo, K.: 610 GHz InAlAs/In0.75Ga0.25As metamorphic HEMTs with an ultra-short 15-nm-gate, pp. 613–616. IEEE, New York (2007)Google Scholar
  10. 10.
    Waldron, N., Kim, D.H., Del Alamo, J.A.: 90 nm self-aligned enhancement-mode InGaAs HEMT for logic applications, pp. 633–636. IEEE, New York (2007)Google Scholar
  11. 11.
    Sourabh, K., Fjeldly, A.: Analytical modelling of surface-potential and drain current in AlGaAs/GaAs HEMT devices. In: IEEE International Symposium on Radio—Frequency Integration Technology, pp. 183–185 (2012)Google Scholar
  12. 12.
    Alam, M.K.: Gate capacitances of high electron mobility transistors. In: International Conference on Electrical and Computer Engineering, pp. 129–131 (2002)Google Scholar
  13. 13.
    Taguchi, T., Matsugatani, K., Hoshino, K., Yamada, H., Ueno, Y.: InAlAs/pseudomorphic-InGaAs MMICs for 76 GHz-band millimetre wave radar. In: International. Symposium on Compound Semiconductors, pp. 193–200 (1999)Google Scholar
  14. 14.
    Mohapatra,M., Mumtaz,A.,Panda,A.K.: Performance evaluation of GaSb/AlGaAs based high electron mobility transistors. In: Conf. on Advances in Recent Technologies in Communication and Computing, pp. 249–252 (2011)Google Scholar
  15. 15.
    Watanabe, I., Shinohara, K., Kitada, T., Shimomura, S., Yamashita, Y., Endoh, A., Mimura, T., Hiyamizu, S., Matsui, T.: Velocity enhancement in cryogenically cooled InP-based HEMTs on (411) a-oriented substrates. IEEE Trans. Electron. Devices 53, 2842–2846 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhou, J.R., Ferry, D.K.: Modeling of quantum effects in ultrasmall HEMT devices. IEEE Trans. Electron. Devices 40, 421–426 (1993)Google Scholar
  17. 17.
    Kizilyalli, I.C., Artaki, M., Shah, N.J., Chandra, A.: Scaling properties and short-channel effects in submicrometer AlGaAs.GaAs MODFET’s: a Monte Carlo study. IEEE Trans. Electron. Devices 40, 234–249 (1993)CrossRefGoogle Scholar
  18. 18.
    Bhattacharya, M., Jogi, J., Gupta,R.S.,Gupta,M.: Temperature-dependent analytical model for microwave and noise performance characterization of In0.52Al0.48As/InmGa1−mAs (0.53  m  0.8) DG-HEMT. IEEE Trans. Device Mater. Reliab. 13, 293–300 (2013)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.ECE DepartmentSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia
  2. 2.ECE DepartmentNISTBerhampurIndia

Personalised recommendations