Grid Computing-Based Performance Analysis of Power System: A Graph Theoretic Approach

  • Himansu Das
  • A. K. Jena
  • P. K. Rath
  • B. Muduli
  • S. R. Das
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 309)


Electrical power grid is a complex network infrastructure. It is necessary to design one infrastructure which can communicate and control the different grid stations. Topological analysis provides the static properties of power grid, which does not meet the real-time requirement of power grid. It is focused on only physical significance of the power grid. By taking resistance as electrical parameters to generate, one weighted graph which provides the different parameters of power grid. This paper compares the topological and electrical characteristics of power grid. Topological analysis focuses on geographic distance rather than electrical distance. It may mislead that topological analysis provides the solution to the electrical power grid.


Grid computing Power grid Complex network Topological analysis Electrical analysis 


  1. 1.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006) Google Scholar
  2. 2.
    Pagani, G.A., Aiello, M.: The power grid as a complex network: a survey. arXiv preprint arXiv:1105.3338 (2011)Google Scholar
  3. 3.
    Wang, Z., Scaglione, A., Thomas, R.J.: Generating statistically correct random topologies for testing smart grid communication and control networks. IEEE Trans. Smart Grid 1(1), 28–39 (2010)CrossRefGoogle Scholar
  4. 4.
    GridGain: last accessed on 21 Feb 2014
  5. 5.
    Das, H., Roy, D.S.: A grid computing service for power system monitoring. Int. J. Comp. Appl. 62 (2013)Google Scholar
  6. 6.
    Das, H., Panda, G.S., Muduli, B., Rath, P.K.: The complex network analysis of power grid: a case study of the West Bengal power network. In: Intelligent Computing, Networking, and Informatics, pp. 17–29. Springer India (2014)Google Scholar
  7. 7.
    Das, H., Mishra, S.K., Roy, D.S.: The topological structure of the Odisha power grid: a complex network analysis. IJMCA 1(1), 012–016 (2013)Google Scholar
  8. 8.
    Wang, Z., Scaglione, A., Thomas, R.J.: On modeling random topology power grids for testing decentralized network control strategies. In: 1st IFAC Workshop Estimation and Control Network System (NecSys’ 09), Venice, Italy (2009)Google Scholar
  9. 9.
    Whitney, D.E., Alderson, D.: Are technological and social networks really different? In: Unifying Themes in Complex Systems, pp. 74–81. Springer, Berlin (2008)Google Scholar
  10. 10.
    Wang, Z., Robert J. T., Scaglione, A.: Generating random topology power grids. In Hawaii International Conference on System Sciences, Proceedings of the 41st Annual, pp. 183–183. IEEE, 2008Google Scholar
  11. 11.
    Klein, D.J., Randić.: Resistance distance. J. Math. Chem. 12(1), 81–95 (1993)Google Scholar
  12. 12.
    Hines, P., Blumsack, S., Cotilla Sanchez, Barrows, C.: The topological and electrical structure of power grids. In: 43rd Hawaii International Conference on System Sciences (HICSS), 2010, pp. 1–10. IEEE, 2010Google Scholar
  13. 13.
    Power System Test Case Archive, last accessed on 01 Mar 2014

Copyright information

© Springer India 2015

Authors and Affiliations

  • Himansu Das
    • 1
  • A. K. Jena
    • 1
  • P. K. Rath
    • 2
  • B. Muduli
    • 2
  • S. R. Das
    • 2
  1. 1.KIIT UniversityOdishaIndia
  2. 2.Roland Institute of TechnologyOdishaIndia

Personalised recommendations