Skip to main content

Phytochemical Pesticides

  • Chapter

Abstract

Many phytochemical pesticides exhibiting broad spectrum of activity against pests and diseases have long been considered as attractive alternative to synthetic chemical pesticides as they are biodegradable, target specific, and pose no or less hazard to the environment or to human health. Although a large number of studies suggest that plant-based materials do affect arthropod pests, vectors, and other pathogens, yet only a handful of botanicals are currently used in agriculture, and there are few prospects for commercial development of new botanical products. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products of microbial origin that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical pesticides are best suited for use in organic food production and can play a much greater role in the production and post-harvest protection of food and food products in developing countries. There is thus a need to organize natural sources, develop quality control, adopt standardization strategies, and modify regulatory mechanisms.

Keywords

  • Phytochemicals
  • Essential oils
  • Limonoids
  • Saponins
  • Rocaglamides
  • Ryanodines
  • Isobutylamides
  • Polyol esters
  • Acetogenins
  • Light-activated botanicals

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelgaleil SAM, Hashinaga F, Nakatani M (2005) Antifungal activity of limonoids from Khaya ivorensis. Pest Manag Sci 61:186–190

    CrossRef  CAS  PubMed  Google Scholar 

  • Agarwal M, Walia S (2003) Pest control potential of phytochemicals derived from Curcuma longa and Zingiber officinale. In: Dureja P, Saxena DB, Kumar J, Singh SB, Gopal M, Tanwar RS (eds) Proceedings of international conference on pesticides, environment, food security, society of pesticide science, New Delhi, pp 110–119

    Google Scholar 

  • Agarwal M, Walia S, Dhingra S (1999) Pest control properties of turmeric leaf oil against Spilosoma obliqua. Dysdercus Koenigii and Tribolium castaneum. In: Proceedings of 2nd all India people’s technology congress, Calcutta, pp 1–7

    Google Scholar 

  • Akhtar M (1998) Biological control of plant-parasitic nematodes by neem products in agricultural soil. Appl Soil Ecol 7:219–223

    CrossRef  Google Scholar 

  • Akhtar M, Alam MM (1991) Integrated control of plant-parasitic nematodes on potato with organic amendments, nematicide and mixed cropping with mustard. Nematol Mediterr 19:169–171

    Google Scholar 

  • Akhtar Y, Isman MB (2003) Larval exposure to oviposition deterrents after subsequent oviposition behavior in generalist, Trichoplusia ni and specialist, Plutella xylostella moths. J Chem Ecol 29:1853–1870

    CrossRef  CAS  PubMed  Google Scholar 

  • Akhtar M, Mahmood I (1996) Control of plant-parasitic nematodes with organic and inorganic amendments in agricultural soil. Appl Soil Ecol 4:243–247

    CrossRef  Google Scholar 

  • Akula C, Akula A, Drew R (2003) Somatic embryogenesis in clonal neem, azadirachta indica a. juss. and analysis for in vitro azadirachtin production. In Vitro Cell Dev Biol Plant 39:304–310

    CrossRef  CAS  Google Scholar 

  • Anarson JT, Philgone BJR, Donskov N, Hudon N, Mc Dougall C, Fortier G, Morand P, Gardner D, Lambert J, Morris C, Nozzolillo C (1985) Antifeedant and insecticidal properties of azadirachtin to the European corn borer, Ostrinia nubilalis. Entomol Exp Appl 66:29–34

    Google Scholar 

  • Anderson JC, Blaney WM, Cole MDS, Fellows LE, Ley SV, Sheppard RN (1989) The structure of two new clerodane diterpenoid potent insect antifeedants from Scutellaria woronowii, Jodrellin A and B. Tetrahedron Lett 30:3737–3740

    Google Scholar 

  • Anshul N, Bhakuni RS, Gaur R, Singh D (2013) Isomeric flavonoids of Artemisia annua (Asterales: Asteraceae) as insect growth inhibitors against Helicoverpa armigera (Lepidoptera: Noctuidae). Fla Entomol 96(3):897–903

    CrossRef  CAS  Google Scholar 

  • Arnason JT, Towers GHN, Philogene BJR, Lambert JDH (1983) The role of natural photosensitizers in plant resistance to insects. In: Hedin PA (ed) Plant resistance to insects. ACS symposium series 208. American Chemical Society, Washington, DC, pp 139–151

    Google Scholar 

  • Arnason JT, Guillet G, Durst T (2004) Phytochemical diversity of insect defenses in tropical and temperate plant families. In: Carde RT, Miller GJ (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 1–20

    CrossRef  Google Scholar 

  • Ascher KRS (1993) Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch Insect Biochem Physiol 22:433–449

    CrossRef  CAS  Google Scholar 

  • Ascher KRS, Streloke M, Schmidt GH, Warthen JD Jr (1989) The antifeedant effects of neem seed kernel extract and azadirachtin on nymphs of Eyprepocnemis plorans. Phytoparasitica 17:167–174

    CrossRef  CAS  Google Scholar 

  • Ayyangar GSC, Rao PJ (1989) Azadirachtin effects on consumption and utilization of food and midgut enzymes of Spodoptera litura (Fab.). Ind J Entomol 51:373–376

    Google Scholar 

  • Bacher M, Brader G, Hofer O, Greger H (1999) Oximes from seeds of Atalantia ceylanica. Phytochemistry 50:991–994

    CrossRef  CAS  Google Scholar 

  • Bakker J, Gommers FJ, Nieuwenhuis I, Wynberg H (1979) Photoactivation of the nematicidal compound alpha-terthienyl from roots of marigolds (Tagetes species). A possible singlet oxygen role. J Biol Chem 254:1841–1844

    CAS  PubMed  Google Scholar 

  • Barnby MA, Klocke JA (1987) Effects of azadirachtin on the nutrition and development of the tobacco budworm, Heliothis virescens. J Insect Physiol 33:69–75

    CrossRef  CAS  Google Scholar 

  • Barnby MA, Klocke JA, Darlington MV, Yamasaki RB (1989) Uptake, metabolism, and excretion of injected tritiated 22, 33-dihydroazadirachtin in last instar larvae of Heliothis virescens. Entomol Exp Appl 52:1–6

    CrossRef  CAS  Google Scholar 

  • Belles X, Camps F, Coll J, Dollars PM (1985) Insect antifeedant activity of clerodane diterpenoids against larvae of Spodoptera littoralis (Lepidoptera). J Chem Ecol 11:1439–1445

    CrossRef  CAS  PubMed  Google Scholar 

  • Bentley MD, Rajab MS, Alford AR, Mendel MJ, Hassanali A (1988) Structure- activity studies of modified citrus limonoids as antifeedants for Colorado potato beetle larvae, Leptinotarsa decemlineata. Entomol Exp et Appl 49:189–193

    CrossRef  CAS  Google Scholar 

  • Berenbaum M (1987) Charge of the light brigade: phototoxicity as a defense against insects. In: Heitz JK, Downum KR (eds) Light- activated pesticides. ACS symposium series 339. American Chemical Society, Washington, DC, pp 206–216

    Google Scholar 

  • Bischof LJ, Enan EE (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem Mol Biol 34:511–521

    CrossRef  CAS  PubMed  Google Scholar 

  • Bowers JH, Locke LC (2000) Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the green house. Plant Dis 84:300–305

    CrossRef  Google Scholar 

  • Brader G, Vajrodays S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides, lignans, triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J Nat Prod 61:1482–1490

    CrossRef  CAS  PubMed  Google Scholar 

  • Brentwood TN (2003) Herbicidal compositions containing plant essential oils and mixtures or blends thereof. US patent 6506707

    Google Scholar 

  • Broza M, Butler GD, Henneberry TJ (1988) Cotton seed oil for the control of Bemisia tabaci on cotton. In: Proceedings of Beltwide cotton production research conference. National Cotton Council of America, Memphis, TN, p 301

    Google Scholar 

  • Burke BA, Goldsby G, Mudd JB (1987) Polar epicuticular lipids of lycopersicon pennellii. Phytochemistry 26:2567–2571

    CrossRef  CAS  Google Scholar 

  • Buta JG, Lusby WR, Neal JW, Waters RM, Pittarelli GW (1993) Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeurodes vaporariorum. Phytochemistry 32:859–864

    CrossRef  CAS  Google Scholar 

  • Butler GD Jr, Henneberry TJ (1991) Effect of oil spray on sweetpotato whitefly and phytotoxicity on watermelons, squash and cucumbers. Southwest Entomol 16:63–72

    Google Scholar 

  • Caballero C, Lopez-Olguin J, Ruiz M, Ortego F, Castanera P (2008) Antifeedant activity and effects of terpenoids on detoxication enzymes of the beet armyworm, Spodoptera exigua (Hübner). Span J Agric Res 6:177–184

    CrossRef  Google Scholar 

  • Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, Casida JE (2004) Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol 17(11):1540–1548

    CrossRef  CAS  PubMed  Google Scholar 

  • Calderon M (1979) Mixing chickpea with paraffin oil to prevent Callosobruchus maculatus (F.) infestation. Progress report for the year 1978–79. Stored Product Division, Special publication no. 140, Ministry of Agriculture, Israel

    Google Scholar 

  • Camps F, Coll J (1993) Insect allelochemicals from Ajuga plants. Phytochemistry 32:1361–1370

    CrossRef  CAS  Google Scholar 

  • Caprioli V, Cimino G, Colle R, Gavagnin M, Sodano G, Spinella A (1987) Insect antifeedant activity and hot taste for humans of selected natural and synthetic l,4-dialdehydes. J Nat Prod 50:146–151

    CrossRef  CAS  PubMed  Google Scholar 

  • Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51(2):369–374

    CrossRef  CAS  PubMed  Google Scholar 

  • Casida JE, Quistad GB (1995) Pyrethrum flowers: production, chemistry, toxicology and uses. Oxford University Press, Oxford

    Google Scholar 

  • Chaidir JH, Nugroho BW, Bohnenstengel FI, Wray V, Witte L, Hung PD, Kiet LC, Proksch P (1999) New insecticidal rocaglamide derivatives from flowers of Aglaia duperreana (Meliaceae). Phytochemistry 52:837–842

    CrossRef  CAS  Google Scholar 

  • Champagne DE, Isman MB, Towers GHN (1989) Insecticidal activity of phytochemicals and extracts of the Meliaceae. In: Arnason J et al (eds) Insecticides of plant origin. ACS symposium series 387, New York, pp 95–109

    Google Scholar 

  • Champagne DE, Koul O, Isman MB, Scudder GGE, Towers GHN (1992) Biological activities of limonoids from the Rutales. Phytochemistry 31:377–394

    CrossRef  CAS  Google Scholar 

  • Chan GFQ, Towers GH, Mitchell JC (1975) Ultraviolet-mediated antibiotic activity of thiophene compounds of Tagetes. Phytochemistry 14:2295–2296

    CrossRef  CAS  Google Scholar 

  • Chen W, Isman MB, Chiu SF (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae). J Appl Entomol 119:367–370

    CrossRef  Google Scholar 

  • Chiu SF (1989) Recent advances in research on botanical insecticides in China. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society symposium series 387, Washington, DC, pp 69–77

    Google Scholar 

  • Chockalingam S, Thenmozhi S, Sundari MSN (1990) Larvicidal activity of different products against mosquito larvae. J Environ Biol 11:101–104

    CAS  Google Scholar 

  • Chortyk OT, Nottingham SF (1995). Natural sugar esters as potent whitefly insecticides. In: 209th national meeting. American Chemical Society, 2–6 April 1995, Anaheim, CA

    Google Scholar 

  • Chortyk OT, Severson RF, Cutler HC, Sisson VA (1993) Antibiotic activities of sugar esters isolated from selected Nicotiana species. Biosci Biotechnol Biochem 57:1355–1356

    CrossRef  CAS  PubMed  Google Scholar 

  • Chortyk OT, Pomonis JG, Johnson AW (1996) Syntheses and characterizations of insecticidal sucrose esters. J Agric Food Chem 44:1551–1557

    CrossRef  CAS  Google Scholar 

  • Clay DV, Dixon FL, Willoughby I (2005) Natural products as herbicides for tree establishment. Forestry 78(1):1–9

    CrossRef  Google Scholar 

  • Cole MD, Anderson JC, Blaney WM, Fellows LE, Ley SV, Sheppard RN et al (1990) Neoclerodane insect antifeedants from Scutellaria galericulata. Phytochemistry 29:1793–1796

    CrossRef  CAS  Google Scholar 

  • Coll J, Tandrόn YA (2007) Neo-Clerodane diterpenoids from Ajuga: structural elucidation and biological activity. Phytochem Rev 7:25–49

    CrossRef  CAS  Google Scholar 

  • Cooper-Driver GA, LeQuesne PW (1987) Diterpenoids as insect antifeedants and growth inhibitors: role in Solidago species. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. ACS symposium series 330. American Chemical Society, Washington, DC, pp 534–550

    Google Scholar 

  • Copping LG (1996) Crop protection agents from nature: natural products and analogues. Critical reports on applied chemistry, vol 35. Royal Society of Chemistry, Thomas Graham House, Cambridge

    Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    CrossRef  CAS  PubMed  Google Scholar 

  • Cornelius ML, Grace KJ, Yates JR (1997) Toxicity of monoterpenoids and other natural products to the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 90:320–325

    CrossRef  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiol:1250–1318

    Google Scholar 

  • Daferera DJ, Ziogas BN, Polissiou MG (2000) GC-MS analysis of essential oils from some Greek aromatic plants and their fungi toxicity on Penicillium digitatum. J Agric Food Chem 48:2576–2581

    CrossRef  CAS  PubMed  Google Scholar 

  • Dahlman DL, Hibbs ET (1967) Response of Empoasca fabae (Cicadellidae:Homopter) to tomatine, solanine, leptine I, tomatidine, solanidine and demissidine. Ann Entomol Soc Am 60:732–740

    CrossRef  CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    CrossRef  CAS  PubMed  Google Scholar 

  • Delle-Monache F, Maring Bettolo GB, Bernays EA (1984) Isolation of insect antifeedant alkaloids from Maytenus rigida (Celastraceae). Z Angew Entomol 97:406–414

    CrossRef  CAS  Google Scholar 

  • Deshpande RS, Adhikari PR, Tipnis HP (1974) Stored grain pest control agents from Nigella sativa and Pogostemon heyneanus. Bull Grain Technol 12:232

    CAS  Google Scholar 

  • Dev S, Koul O (1997) Insecticides of plant origin. Harwood Academic Publishers Gmbh, Amsterdam

    Google Scholar 

  • Devakumar C, Goswami BK (1992) Nematicidal principles from neem (Azadirachta indica A. Juss) Part III. Isolation and bioassay of some neem meliacins. Pestic Res J 4:81–86

    Google Scholar 

  • Devine M, Duke SO, Fedtke C (1993) Naturally occurring chemicals as herbicides. In: Devine MD, Duke SO, Fedtke C (eds) Physiology of herbicide action. Prentice Hall, Englewood Cliffs, pp 395–424

    Google Scholar 

  • Dhaliwal GS, Koul O (2007) Biopesticides and pest management: conventional and biotechnological approaches. Kalyani Publishers, New Delhi

    Google Scholar 

  • Dixit OP, Saxena RC (1990) Insecticidal action of Premma integrifolia against Callosobruchus chinensis. Pesticides 24:29–31

    Google Scholar 

  • Doharey RB, Katiyar RN, Singh KM (1990) Eco-toxicological studies on pulse beetles infesting green gram. Bull Grain Technol 28(2):116–119

    Google Scholar 

  • Dorn A, Rademacher JM, Sehn E (1986) Effects of azadirachtin on the moulting cycle, endocrine system and ovaries in last-instar larvae of the milkweed bug, Oncopeltus fasciatus. J Insect Physiol 32:321–328

    Google Scholar 

  • Dudai N, Poljakoff-Mayber A, Mayer AM, Putievsky E, Lerner HR (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J Chem Ecol 25:1079–1089

    CrossRef  CAS  Google Scholar 

  • Duke SO (1990) Natural pesticides from plants. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 511–517

    Google Scholar 

  • Duke SO, Dayan FE, Rimando AM (2000) Natural products and herbicide discovery. In: Cobb HS, Kirkwood RC (eds) Herbicides and their mechanisms of action. Sheffield Academic Press, Sheffield, pp 105–133

    Google Scholar 

  • Egunjobi OA, Afolami SO (1976) Effect of neem (Azadirachta indica) leaf extracts on populations of Pratylenchus brachyurus and on the growth and yield of maize. Nematologica 22:125–132

    CrossRef  Google Scholar 

  • Eigenbrode SD, Thumble JT, Millar JG, White KK (1994) Topical toxicity of tomato sesquiterpenes to the beat armyworm and the role of these compounds in resistance derived from an accession of Lycopersicon hirsutum f. typicum. J Agric Food Chem 42:807–810

    CrossRef  CAS  Google Scholar 

  • Einolf WN, Chan WG (1984) Estimation of sucrose esters in tobacco by direct chemical ionization mass spectrometry. J Agric Food Chem 32(4):785–789

    CrossRef  CAS  Google Scholar 

  • Esposti MD, Ghelli A, Ratta M, Cortes D, Estornell E (1994) Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (complex I). Biochem J 30(1):161–167

    CrossRef  Google Scholar 

  • Fieser LF, Berliner E, Bondhus FJ, Chang FC, Dauben WG, Ettlinger MG, Fawaz G, Fields M, Fieser M, Heidelberger C, Heymann H, Seligman AM, Vaughan WR, Wilson E, Wu M, Leffler MT, Hamlin KE, Hathaway RJ, Matson EJ, Moore EE, Moore MB, Rapala RT, Zaugg HE (1948) Naphthoquinone antimalarials. J Am Chem Soc 70:3151–3244

    CrossRef  CAS  PubMed  Google Scholar 

  • Garcia ES, Rembold H (1984) Effects of azadirachtin on ecdysis of Rhodnius prolixus. J Insect Physiol 30:939–941

    CrossRef  CAS  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    CrossRef  CAS  PubMed  Google Scholar 

  • Goffreda JC, Mutschler MA, Ave DA, Tengey WM, Steffens JC (1989) Aphid deterrence by glucose esters in glandular trichome exudates of the wild tomato, Lycopersicon pennellii. J Chem Ecol 15:2135–2147

    CrossRef  CAS  PubMed  Google Scholar 

  • Gonzalez-Coloma A, Gutierrez C, Del Corral JMM, Gordaliza M, De La Puente ML, San Feliciano A (2000) Structure and species-dependent insecticidal effects of neo-clerodane diterpenes. J Agric Food Chem 48:3677–3681

    CrossRef  CAS  PubMed  Google Scholar 

  • Govindachari TR, Narasimhan NS, Suresh G, Partho PD, Gopalakrishnan G, Krishna Kumari GN (1995) Structure-related insect antifeedant and growth regulating activities of some limonoids. J Chem Ecol 21:1585–1600

    CrossRef  CAS  PubMed  Google Scholar 

  • Grainge M, Ahmed S (1988) Handbook of plants with pest-control properties. Wiley, New York

    Google Scholar 

  • Gussregan B, Puhr M, Nugroho BW, Wray V, Witte I, Proksch P (1999) New insecticidal rocaglamide derivative from flower of Aglaia odorata. Z Naturforsch 52:339–343

    Google Scholar 

  • Harborne JB (1977) Introduction to ecological biochemistry. Academic Press, New York

    Google Scholar 

  • Hasspieler B, Arnason JT, Downe AER (1988) Toxicity, localization and elimination of the phototoxin alpha-terthienyl in mosquito larvae. J Am Mosq Control Assoc 4:479–484

    CAS  PubMed  Google Scholar 

  • Hierro I, Valero A, Perez P, Gonzalez P, Cabo MM, Montilla MP, Navarro MC (2004) Action of different monoterpenic compounds against Anisakis simplex s.l. L3 larvae. Phytomedicine 11:77–82

    CrossRef  CAS  PubMed  Google Scholar 

  • Hill J, Schoonhoven AV (1981) Effectiveness of vegetable oil fractions in controlling the Mexican bean weevil. J Econ Entomol 74:478–479

    CrossRef  CAS  Google Scholar 

  • Hough-Goldstein JA (1990) Antifeedant effects of common herbs on the Colorado potato beetle (Coleoptera: Chrysomelidae). Environ Entomol 19:234–238

    CrossRef  Google Scholar 

  • Hummelbruner LA, Isman MB (2001) Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lepidoptera:Noctuidae). J Agric Food Chem 49:715–720

    CrossRef  CAS  Google Scholar 

  • Hutchins RFN, Sutherland ORW, Gnanasunderam C, Greenfield WJ, Williams EM, Wright HJ (1984) Toxicity of nitro compounds from Lotus pedunculatus to grass grub (Costelytra zealandica) (Coleoptera: Scarabaeidae). J Chem Ecol 10:81–93

    CrossRef  CAS  PubMed  Google Scholar 

  • Ishibashi F, Satasook C, Isman MB, Towers GHN (1993) Insecticidal 1H-cyclopentatetrahydro[b]benzofurans from Aglaia odorata (Lour.) (Meliaceae). Phytochemistry 32:307–310

    CrossRef  CAS  Google Scholar 

  • Isman MB (1994) Botanical insecticides and antifeedants: new sources and perspectives. Pestic Res J 6:11–19

    Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CrossRef  CAS  Google Scholar 

  • Isman MB (2001) Biopesticides based on phytochemicals. In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides. Harwood Academic Publishers, Amsterdam, pp 1–12

    Google Scholar 

  • Isman MB (2005) Problems and opportunities for the commercialization of insecticides. In: Regnault-Roger C, Philogene BJR, Vincent R (eds) Biopesticides of plant origin. Lavoisier, Paris, pp 283–291

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann Rev Entomol 51:45–66

    CrossRef  CAS  Google Scholar 

  • Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier BV, Amsterdam, pp 29–44

    CrossRef  Google Scholar 

  • Isman MB, Brard NL, Nawrot J, Harmatha J (1989) Antifeedant and growth inhibitory effects of bakkenolide-A and other sesquiterpene lactones on the variegated cutworm, Peridroma saucia Hubner (Lep., Noctuidae). J Appl Entomol 107:524–529

    CrossRef  Google Scholar 

  • Ivie GW, Witzel DA (1982) Sesquiterpene lactones: structure, biological action and toxicological significance. In: Keeler RF, Tu AT (eds) Handbook of natural toxins. Marcel Dekker Inc., New York, pp 543–584

    Google Scholar 

  • Jacobson M (1989) Pharmacology and toxicology of neem. In: Jacobson M (ed) Phytochemical pesticides, vol 1. The neem tree. CRC Press, Boca Raton, pp 133–153

    Google Scholar 

  • Janprasert J, Satasook C, Sukumalanand P, Champagne DE, Isman MB, Wiriyachitra P, Towers GHN (1993) Rocaglamide, a natural benzofuran insecticide from Aglaia odorata. Phytochemistry 32:67–69

    CrossRef  Google Scholar 

  • Jansen BJM, Groot A (1991) The occurrence and biological activity of drimane sesquiterpenoids. Nat Prod Rep 8:309–318

    CrossRef  CAS  PubMed  Google Scholar 

  • Jauch J (2008) Total synthesis of azadirachtin – finally completed after 22 years. Angew Chem Int Ed 47:34–37

    CrossRef  CAS  Google Scholar 

  • Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In: Cutler SJ, Cutler JG (eds) Biologically active natural products: pharmaceuticals. CRC Press, Boca Raton, pp 173–183

    Google Scholar 

  • Karr LL, Coats JR (1988) Insecticidal properties of d-limonene. J Pestic Sci 13:287–290

    CrossRef  CAS  Google Scholar 

  • Kawazu K, Ariwa M, Kii Y (1977) An ovicidal substance cis dehydro matricaria ester from solidago altissima. Agric Biol Chem 41(1):223–224

    CrossRef  CAS  Google Scholar 

  • Kays SJ, Severson RF, Nottingham SF, Chalfant RB, Chortyk O (1994) Possible biopesticide from Petunia for the control of sweetpotato whitefly (Bemisia tabaci) on vegetable crop. Proc Fla State Hortic Soc 107:163–167

    Google Scholar 

  • Kelm MA, Nair MG, Schutzki RA (1997) Mosquitocidal compounds from Magnola salicifolia. Int J Pharmcognosy 35:84–90

    CrossRef  CAS  Google Scholar 

  • Khaire VM, Kachare BV, Mote UN (1992) Efficacy of different vegetable oils as grain protectants against pulse beetle, Callosobruchus chinensis L. in increasing storability of pigeonpea. J Stored Prod Res 28:153–156

    CrossRef  Google Scholar 

  • Khambay BPS, Jewess P (2000) The potential of natural naphthoquinones as the basis for a new class of pest control agents-an overview of research at IACR-Rothamsted. Crop Prot 19:597–601

    CrossRef  CAS  Google Scholar 

  • Khambay BPS, Batty D, Beddy DG, Denholm I, Cahill MR (1997a) A new group of plant derived naphthoquinone pesticides. Pestic Sci 50:291–296

    CrossRef  CAS  Google Scholar 

  • Khambay BPS, Brddle DG, Simmonds MSJ (1997b) In pursuit of insecticidal compounds from plants. In: Wrigley S, Hayes M, Thomas R, Chrystal E (eds) Phytochemical diversity-a source of new industrial products. Royal Society of Chemistry, Cambridge, pp 158–169

    Google Scholar 

  • Khambay BPS, Batty D, Cahill MR, Denholm I, Mead-Briggs M, Vinall S, Niemeyer HM, Simmonds MSJ (1999) Isolation, characterization, and biological activity of naphthoquinones from Calceolaria andina L. J Agric Food Chem 47:770–775

    CrossRef  CAS  PubMed  Google Scholar 

  • Khambay BPS, Batty D, Jewess PJ, Bateman GL, Hollomon DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manag Sci 59:174–182

    CrossRef  CAS  PubMed  Google Scholar 

  • King RR, Singh RP, Bouicher A (1987) Variation in sucrose esters from the type B glandular trichomes of certain wild potato species. Am Potato J 64:529–534

    CrossRef  Google Scholar 

  • King RR, Calhoun LA, Singh RP (1988) 3,4-di-O- and 2,3,4-tri-O-acylated glucose esters from the glandular trichomes of non-tuberous Solanum species. Phytochemistry 27:3765–3768

    CrossRef  CAS  Google Scholar 

  • Kong CH, Wang P, Zhang CX, Zhang MX, Hu F (2006) Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res 46:290–295

    CrossRef  CAS  Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58(11):1101–1106

    CrossRef  CAS  PubMed  Google Scholar 

  • Koul O (1982) Insect feeding deterrents in plants. Ind Rev Life Sci 2:97–125

    CAS  Google Scholar 

  • Koul O (1984) Azadirachtin-I. Interaction with the development of red cotton bugs. Entomol Exp Appl 36:85–88

    CrossRef  CAS  Google Scholar 

  • Koul O (1996) Mode of azadirachtin action. In: Randhawa NS, Parmar BS (eds) Neem. New Age International Publishers Ltd., New Delhi, pp 160–170

    Google Scholar 

  • Koul O (2005) Insect antifeedants. CRC Press, Boca Raton

    Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: an antifeedant approach. Crit Rev Plant Sci 27:1–24

    CrossRef  CAS  Google Scholar 

  • Koul O, Dhaliwal GS (2001) Phytochemical biopesticides. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Koul O, Wahab S (2004) Neem: today and in the new millennium. Kluwer Academic Publishers, Dordrecht

    CrossRef  Google Scholar 

  • Koul O, Walia S (2009) Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 4:1–30

    Google Scholar 

  • Koul O, Amanai K, Ohtaki K (1987) Effect of azadirachtin on the endocrine events of Bombyx mori. J Insect Physiol 33:103–108

    CrossRef  CAS  Google Scholar 

  • Koul O, Multani JS, Singh G, Wahab S (2002) Bioefficacy of toosendanin from Melia dubia (syn. M. azedarach) against gram pod borer, Helicoverpa armigera (Hubner). Curr Sci 83:1387–1391

    CAS  Google Scholar 

  • Koul O, Multani JS, Singh G, Daniewski WM, Berlozecki S (2003) 6ß-hydroxygedunin from Azadirachta indica. Its potentiation effects with some non-azadirachtin limonoids in neem against lepidopteran larvae. J Agric Food Chem 51:2937–2942

    CrossRef  CAS  PubMed  Google Scholar 

  • Koul O, Multani JS, Goomber S, Daniewski WM, Berlozecki S (2004a) Activity of some non-azadirachtin limonoids from Azadirachta indica against lepidopteran larvae. Aust J Entomol 43:189–195

    CrossRef  Google Scholar 

  • Koul O, Singh G, Singh R, Singh J, Daniewski WM, Berlozecki S (2004b) Bioefficacy and mode of action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. J Biosci 29:409–416

    CrossRef  CAS  PubMed  Google Scholar 

  • Koul O, Kaur H, Goomber S, Wahab S (2004c) Bioefficacy of rocaglamide from Aglaia elaeagnoidea (syn. A. roxburghiana) against gram pod borer, Helicoverpa armigera (Hubner). J Appl Entomol 128:177–1781

    CrossRef  CAS  Google Scholar 

  • Koul O, Singh G, Singh R, Multani JS (2005a) Bioefficacy and mode-of-action of aglaroxin A from Aglaia elaeagnoidea (syn. A. roxburghiana) against Helicoverpa armigera and Spodoptera litura. Entomol Exp Appl 114:197–204

    CrossRef  CAS  Google Scholar 

  • Koul O, Singh G, Singh R, Singh J (2005b) Bioefficacy and mode-of-action of aglaroxin B and aglaroxin C from Aglaia elaeagnoidea (syn. A. roxburghiana) against Helicoverpa armigera and Spodoptera litura. Biopest Int 1:54–64

    Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopest Int 4:63–84

    Google Scholar 

  • Krishna KG, Pande R, Harsha S (2007) Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot disease in peanut. Plant Dis 91:375–379

    CrossRef  CAS  Google Scholar 

  • Kubo I, Nakanishi K (1978) Some terpenoid insect antifeedants from tropical plants. In: Geissbuhler H (ed) Advances in pesticide science, part 2. Pergamon Press, Oxford, pp 284–294

    Google Scholar 

  • Kubo I, Klocke JA, Miura I, Fukuyama Y (1982) Structure of ajugarin-IV. J Chem Soc Chem Commun 11:618–619

    Google Scholar 

  • Kubo I, Fukuyama Y, Chapya A (1983) Structure of ajugarin-lV. Chem Lett 10:223

    CrossRef  Google Scholar 

  • Kumar S, Singh D, Mehta SS, Srivastava AK (1995) A process for the preparation of pest repellent tablet. Application no. 2441 Del 1995 dated 27-03-97, Granted Indian Patent No. 184803 dated 27-04-2001

    Google Scholar 

  • Kumar S, Tyagi BR, Bahl JR, Khanuja SPS, Shasany AK, Shukla RS, Sattar A, Singh D, Haseeb A, Singh VP, Ram P, Singh K, Singh S, Singh SP, Patra NK, Alam M, Naqvi AA, Ram M, Agarwal KK, Singh K (1999) Mint plant Mentha arvensis, Himalaya. US Patent No. 10935 dated 6/01/99, Application No. 08/855, 768

    Google Scholar 

  • Kurita N, Miyaji M, Kurane R, Trakahara Y (1981) Antifungal activity of components of essential oils. Agric Biol Chem 45:945–952

    CrossRef  CAS  Google Scholar 

  • Lajide L, Escoubas P, Mizutani J (1995a) Termite antifeedant activity in Detarium microcarpum. Phytochemistry 40:1101–1104

    CrossRef  CAS  Google Scholar 

  • Lajide L, Escoubas P, Mizutani J (1995b) Termite antifeedant activity in Xylopia aethiopica. Phytochemistry 40:1105–1112

    CrossRef  CAS  Google Scholar 

  • Lalonde RT, Morris CD, Wong CF, Gardner LC, Exkert DJ, King DR, Zimmerman RH (1979) Response of Aedes triseriatus larvae to fatty acids of Cladophora glomerata. J Chem Ecol 5:371–382

    CrossRef  CAS  Google Scholar 

  • Lapointe SL, Tingey WM (1984) Feeding response of the green peach aphid (Homoptera: Aphididae) to potato glandular trichomes. J Econ Entomol 77:386–389

    CrossRef  Google Scholar 

  • Lavie D, Jain MK (1967) Tetranortriterpenoids from Melia azadirachta L. Chem Commun 6:278–280

    Google Scholar 

  • Lee S, Tsao R, Peterson C, Coats JR (1997) Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), twospotted spider mite (Acari: Tetranychidae), and house fly (Diptera: Muscidae). J Econ Entomol 90(4):883–892

    CrossRef  CAS  PubMed  Google Scholar 

  • Li X (1999) Recent studies on insecticidal activities of limonoids from meliaceaous plants. Entomol Sinica 6:283–288

    Google Scholar 

  • Lichtenstein EP, Liang TT, Schulz KR, Schnoes HK, Carter GT (1974) Insecticidal and synergistic components isolated from dill plants. J Agric Food Chem 22:658–664

    CrossRef  CAS  PubMed  Google Scholar 

  • Macleod JK, Moeller PDR, Molinski TF, Koul O (1990) Antifeedant activity and 13C NMR spectral assignments of the meliatoxins. J Chem Ecol 16:2511–2518

    CrossRef  CAS  PubMed  Google Scholar 

  • Marchant YY, Cooper GK (1987) Structure and function relationships in Polyacetylene photoactivity. In: Heitz JR, Downum KR (eds) Light-activated pesticides. ACS symposium series, pp 241–254

    Google Scholar 

  • Marquina S, Maldonado N, Garduño-Ramírez ML, Aranda E, Villarreal ML, Navarro V, Bye R, Delgado G, Alvarez L (2001) Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens. Phytochemistry 56:93–97

    CrossRef  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Koseki K, Koiwai A (1988) Germination and growth inhibition of surface lipids from nicotiana species and identification of sucrose esters. Agric Biol Chem 52(8):1889–1897

    CrossRef  CAS  Google Scholar 

  • Matsuzaki T, Shinozaki Y, Suhara S, Ninomiya M, Shigematsu H, Koiwai A (1989a) Isolation of glycolipids from the surface lipids of Nicotiana bigelovii and their distribution in Nicotiana species. Agric Biol Chem 53:3079–3082

    CrossRef  CAS  Google Scholar 

  • Matsuzaki T, Shinozaki Y, Suhara S, Shigematsu H, Koiwai A (1989b) Isolation and characterization of tetra- and triacylglucose from surface lipids of Nicotiana miersii. Agric Biol Chem 53:3343–3345

    CrossRef  CAS  Google Scholar 

  • Matsuzaki T, Fukamiya N, Okano M, Fujita T, Tagahara K, Lee KH (1991) Picrasinoside H, a new quassinoid glucoside, and related compounds from the stem wood of Picrasma ailanthoides. J Nat Prod 54(3):844–848

    CrossRef  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Shinozaki Y, Hagimori M, Tobita T, Shigematsu H, Koiwai A (1992) Novel glycerolipids and glycolipids from the surface lipids of Nicotiana benthamiana. Biosci Biotechnol Biochem 56:1565–1569

    CrossRef  CAS  Google Scholar 

  • Meher HC, Walia S, Sethi CL (1988) Effect of steroidal and triterpenic saponins on the mobility of juveniles of Meloidogyne incognita. Indian J Nematol 18:244–247

    Google Scholar 

  • Merritt AT, Ley SV (1992) Clerodane diterpenoids. Nat Prod Rep 9:243–287

    CrossRef  CAS  PubMed  Google Scholar 

  • Miller DA, Chamberlain WF (1989) Azadirachtin as larvicide against the hornfly, stable fly and house fly. J Econ Entomol 82:1375–1378

    CrossRef  CAS  PubMed  Google Scholar 

  • Miranda JEM, Navickiene HMD, Nogueira-Couto RH, De Bortoli S, Kato MJ, Bolzani VS et al (2003) Susceptibility of Apis mellifera (Hymenoptera: Apidae) to pellitorine, an amide isolated from Piper tuberculatum (Piperaceae). Apidologie 34:409–415

    CrossRef  CAS  Google Scholar 

  • Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:20–28

    CrossRef  Google Scholar 

  • Montser BR, Carvajal M (1998) Control of Aspergillus flavus in maize with plant essential oils and their components. J Food Prot 61:616–619

    Google Scholar 

  • Mordue AJ, Blackwell A (1993) Azadirachtin : an update. J Insect Physiol 39:903–924

    CrossRef  CAS  Google Scholar 

  • Mordue AJ, Cottee PK, Evans KA (1985) Azadirachtin: its effect on gut mortality, growth and moulting in Locusta. Physiol Entomol 10:431–437

    CrossRef  CAS  Google Scholar 

  • Muller RF, Berger B, Yegen O (1995) Chemical composition and fungi toxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J Agric Food Chem 43:2262–2266

    CrossRef  Google Scholar 

  • Mullin CA, Gonzalez-Coloma A, Gutierrez C, Reima M, Eichenseer H, Hollister B et al (1997) Antifeedant effects of some novel terpenoids on chrysomelid beetles: comparison with alkaloids on an alkaloid-adapted and non-adapted species. J Chem Ecol 23:1851–1866

    CrossRef  CAS  Google Scholar 

  • Munoz DM, Dela Torre MC, Rodriguez B, Simmonds MSJ, Blaney WM (1997) Neo-Clerodane insect antifeedants from Scutellaria alpina sub sp. Javalambrensis. Phytochemistry 44:593–597

    CrossRef  CAS  Google Scholar 

  • Narwal SS, Hoagland RE, Dilday RH, Reigosa MJ (1999) Allelopathy in ecological agriculture and forestry. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Navickiene HMD, Miranda JE, Bortoli SA, Kato MJ, Bolzani VS, Furlan M (2007) Toxicity of extracts and isobutyl amides from Piper tuberculatum: potent compounds with potential for the control of the velvetbean caterpillar, Anticarsia gemmatalis. Pest Manag Sci 63:399–403

    CrossRef  CAS  PubMed  Google Scholar 

  • Neal JJ, Tingey WM, Steffens JC (1990) Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J Chem Ecol 16:487–497

    CrossRef  CAS  PubMed  Google Scholar 

  • Neal JW Jr, Buta JG, Pittarelli GW, Lusby WR, Bentz JA (1994) Novel sucrose esters from Nicotiana gossei: effective biorationals against selected horticultural insect pests. J Econ Entomol 87:1600–1607

    CrossRef  CAS  Google Scholar 

  • Neoliya NK, Singh D (2005) Effect of some neem based formulations on the metamorphic development of gram pod borer, Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). In: Proceedings of ICIPE 2002 held at NBRI, Lucknow, India, Plant response to environmental stress, pp 459–463

    Google Scholar 

  • Neoliya NK, Singh D, Sangawan RS (2005) Azadirachtin influences total head protein content of Helicoverpa armigera Hub. Larvae. Curr Sci 88(12):1889–1890

    CAS  Google Scholar 

  • Neoliya NK, Singh D, Sangwan RS (2007) Azadirachtin based insecticides induce alteration in Helicoverpa armigera Hub. head polypeptides. Curr Sci 92(1):94–99

    CAS  Google Scholar 

  • Nguefack J, Nguikwie SK, Fotio D, Dongmo B, Zollo PH, Amvam LV, Nkengfack AE, Poll L (2007) Fungicidal potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris to control Alternaria padwickii and Bipolaris oryzae, two seed borne fungi of rice. J Essent Oil Res 19:581–587

    CrossRef  CAS  Google Scholar 

  • Ntalli NG, Menkissoglu-Spiroudi U, Giannakou IO (2010) Nematicidal activity of powder and extracts of Melia azedarach fruits against Meloidogyne incognita. Ann Appl Biol 156:309–317

    CrossRef  Google Scholar 

  • Nugroho BW, Edrada RA, Gussregen B, Wray V, Witte L, Bringmann G, Proksch P (1997a) Insecticidal rocaglamide derivatives from Aglaia Duppereana. Phytochemistry 44:1455–1461

    CrossRef  CAS  Google Scholar 

  • Nugroho BW, Gussregen B, Wray V, Witte L, Bringmann G, Gehling M, Proksch P (1997b) Insecticidal rocaglamide derivatives from Aglaia elliptica and A. harmsiana. Phytochemistry 45:1579–1585

    CrossRef  CAS  Google Scholar 

  • Nugroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Proksch P (1999) An insecticidal rocaglamide derivative and related compounds from Aglaia odorata. Phytochemistry 51:367–376

    CrossRef  CAS  Google Scholar 

  • Oh S, Kim JA, Jeon H, Park JC, Koh YJ, Hur H, Hur J (2008) Antifungal activity of Eucalyptus-derived phenolics against postharvest pathogens of kiwifruits. Plant Pathol J 24:322–327

    CrossRef  CAS  Google Scholar 

  • Ohya I, Shinozaki Y, Tobita T, Takahashi H, Matsuzaki T, Koiwai A (1994) Sucrose esters from the surface lipids of Nicotiana cavicola. Phytochemistry 37:143–145

    CrossRef  CAS  PubMed  Google Scholar 

  • Oleszek W, Jurzysta M, Gorski PM (1992) Alfalfa saponins the allelopathic agents. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman & Hall, London

    Google Scholar 

  • Oliviera MF, Lemos TG, De Mattos MC, Segundo TA, Santiago GM, Braz-Filho R (2002) New enamine derivatives of lapachol and biological activity. An Acad Bras Cienc 74:211–221

    CrossRef  Google Scholar 

  • Omar S, Marcotte M, Fields P, Sanchez PE, Poveda L, Mata R et al (2007) Antifeedant activities of terpenoids isolated from tropical Rutales. J Stored Prod Res 43:92–96

    CrossRef  CAS  Google Scholar 

  • Ortego F, Rodriguez B, Castanera P (1995) Effects of neo-Clerodane diterpenes from Teucrium on feeding behavior of Colorado potato beetle larvae. J Chem Ecol 21:1375–1386

    CrossRef  CAS  PubMed  Google Scholar 

  • Ouden HD, Den VJH, Alkema DPW, Dev JJ, Derks PSM (1993) Experiments with volatile oil substances in slow release formulations causing repellency for oviposition by the cabbage root fly, Phorbia brassicae Bche (Diptera, Anthomydae). J Appl Entomol 115:307–312

    CrossRef  Google Scholar 

  • Pandey GP, Doharey RB, Verma BK (1981) Efficacy of some vegetable oil for protecting greengram against the attack of Callosobruchus maculatus (F.). Ind J Agric Sci 51:910–912

    Google Scholar 

  • Parmar BS, Walia S (2001) Prospects and problems of phytochemical biopesticides In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides. Hardwood Academic Publishers, Amsterdam, pp 133–210

    Google Scholar 

  • Paster N, Menasherou M, Ravid U, Juven B (1995) Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J Food Prot 58:81–85

    CAS  Google Scholar 

  • Pereirra J (1983) The effectiveness of six vegetable oils as protectants of cowpea and bambaera groundnuts against infestations by Callosobruchus maculatus. J Stored Prod Res 19:57–62

    CrossRef  Google Scholar 

  • Pickett JA, Dawson GW, Griffith DC, Hassanali A, Merritt LA, Mudd A et al (1987) Development of plant derived antifeedants for crop protection. In: Greenhalgh R, Roberts TR (eds) Pesticide science and biotechnology. Blackwell Scientific Publications, Oxford, pp 125–128

    Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1997) Developing sustainable pest control from chemical ecology. Agric Ecosyst Environ 64:149–156

    CrossRef  CAS  Google Scholar 

  • Pimental D (2005) Encyclopedia of pest management, CRC Press, Boca Raton, FL. powder and extracts of Melia azedarach fruits against Meloidogyne incognita. Ann Appl Biol 156(2):309–317

    Google Scholar 

  • Pradhan S, Jotwani MG, Rail BK (1962) The neem seed deterrent to locusts. Ind Farm 12:711

    Google Scholar 

  • Pradhanang PM, Momol MT, Olson SM, Jones JB (2003) Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis 87:423–427

    CrossRef  CAS  Google Scholar 

  • Prakash G, Srivastava AK (2007) Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochem 42:93–97

    CrossRef  CAS  Google Scholar 

  • Prakash G, Emmannuel CJSK, Srivastava AK (2005) Variability of azadirachtin in Azadirachta indica (neem) and batch kinetics studies of cell suspension culture. Biotech Bioproc Eng 10:198–204

    CrossRef  CAS  Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140(8):1363–1372

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Proksch P, Edrada R, Ebel R, Bohnenstengel IF, Nugroho WB (2001) Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr Org Chem 5:923–938

    CrossRef  CAS  Google Scholar 

  • Puri SN, Butler GD, Henneberry JJ (1991) Plant derived oils and soap solutions as control for the whitefly on cotton. J Appl Zool Res 2:1–5

    Google Scholar 

  • Puri SN, Bhosle BB, Elyas M, Butler GD, Henneberry JJ (1994) Detergents and plant derived oils for control of the sweetpotato whitefly on cotton. Crop Prot 13:45–48

    CrossRef  CAS  Google Scholar 

  • Puterka GJ, Severson RF (1995) Activity of sugar esters isolated from leaf trichomes of Nicotiana gossei to pear psylla (Homoptera: Psyllidae). J Econ Entomol 88:615–619

    CrossRef  CAS  Google Scholar 

  • Qi Y, Burkholder WE (1981) Protection of stored wheat from the granary weevil by vegetable oils. J Econ Entomol 74:502–505

    CrossRef  Google Scholar 

  • Quarles W (1996) EPA exempts least-toxic pesticides. IPM Pract 18:16–79

    Google Scholar 

  • Raguraman S, Singh D (1997) Biopotentials of Azadirachta indica and Cedrus deodara oils on Callosobruchus chinensis Linn. Int J Pharm (USA) 35:344–348

    CrossRef  CAS  Google Scholar 

  • Randhawa NS, Parmar BS (eds) (2007) Neem, 2nd edn. New Age International Pvt Ltd. Publishers, New Delhi

    Google Scholar 

  • Rao PJ, Subrahmanyam B (1986) Azadirachtin induced changes in development, food utilization and haemolymph constituents of Schistocerca gregaria Forsk. Z Angewandte Chemie Int Edition 102:217–224

    CAS  Google Scholar 

  • Ratnayake BM, Wimalasiri WR, Macleod JK (1988) Ent-kauranes and oleananes from Croton lacciferus. Phytochemistry 27:869–871

    CrossRef  Google Scholar 

  • Ratnayake S, Rupprecht SK, Potter WM, Mclaughlin JL (1992) Evaluation of various parts of the paw paw tree, Asimina triloba (Annonaceae) as commercial sources of the pesticidal annonacious acetogenins. J Econ Entomol 85:2353–2356

    CrossRef  CAS  PubMed  Google Scholar 

  • Ray DP, Walia S, Dureja P, Singh RP (2000) Composition and repellent activity of the essential oil of marigold (Tagetes erecta) flower. Indian Perfum 44:267–270

    Google Scholar 

  • Redfern RE, Kelly TJ, Borokovec AB, Hayes DK (1982) Ecdysteroid titres and moulting aberrations in last stage Oncopeltus fasciatus nymphs treated with insect growth regulators. Pestic Biochem Phys 18:351–356

    CrossRef  CAS  Google Scholar 

  • Reitz SR, Maiorino G, Olson S, Sprenkel R, Crescenzi A, Momol MT (2008) Interesting plant essential oils and kaolin for the sustainable management of thrips and tomato spotted wilt on tomato. Plant Dis 92:878–886

    CrossRef  Google Scholar 

  • Rembold H, Forster H, Czoppelt CH, Rao PJ, Sieber KP (1984) The azadirachtins, a group of insect growth regulators from the neem tree. In: Schmutterer H, Ascher KRS (eds) Natural pesticides from the neem tree and other tropical plants proceedings of the second international neem conference, 25–28 May 1983. Rauischholzhausen, Eschborn, pp 153–162

    Google Scholar 

  • Rice PJ, Coats JR (1994) Structural requirements for monoterpenoid activity against insects, Chapter 8. In: Hedin PA (ed) Bioregulators for crop protection and pest control. American Chemical Society, Washington, DC, pp 92–108

    CrossRef  Google Scholar 

  • Rodriguez E (1985) Insect feeding deterrents from semi arid and arid land plants. In: Hedin PA (ed) Bioregulators for pest control. ACS symposium series 276. American Chemical Society, Washington, DC, pp 447–453

    Google Scholar 

  • Romagni JG, Allen SN, Dayan FE (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J Chem Ecol 26:303–313

    CrossRef  CAS  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121

    CrossRef  CAS  Google Scholar 

  • Rossiter M, Gershenzon J, Mabry TJ (1986) Behavioural and growth responses of specialist herbivores, Homoeosoma electellum to major terpenoid of its host Helianthus spp. J Chem Ecol 12:1505–1521

    CrossRef  CAS  PubMed  Google Scholar 

  • Ruberto G, Renda A, Tringali C, Napoli EM, Simmonds MSJ (2002) Citrus limonoids and their semisynthetic derivatives as antifeedant agents against Spodoptera frugiperda larvae. A structure-activity relationship study. J Agric Food Chem 50:6766–6774

    CrossRef  CAS  PubMed  Google Scholar 

  • Saha S, Walia S, Kumar J, Dhingra S, Parmar BS (2010a) Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J Agric Food Chem 58:434–440

    CrossRef  CAS  PubMed  Google Scholar 

  • Saha S, Walia S, Kumar J, Parmar BS (2010b) Plant growth regulatory activity of triterpenic saponins. J Appl Bot Food Qual 83(2):189–195

    CAS  Google Scholar 

  • Saha S, Walia S, Kumar J, Parmar BS (2010c) Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives thereof against plant pathogenic fungi. Pest Manag Sci 66:825–831

    CAS  PubMed  Google Scholar 

  • Satasook G, Isman MB, Wiriyachita P (1993) Activity of rocaglamide, an insecticidal natural product, against the variegated cut worm, Peridroma saucia, (Lepidoptera: Noctuidae). Pestic Sci 36:53–58

    CrossRef  Google Scholar 

  • Saxena RC (1987) Antifeedants in tropical pest management. Insect Sci Appl 18:731–736

    Google Scholar 

  • Saxena RC (1998) Botanical pest control. In: Dhaliwal GS, Heinrichs EA (eds) Critical issues in insect pest management. Commonwealth Publishers, New Delhi, pp 155–179

    Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Ann Rev Entomol 35:271–292

    CrossRef  CAS  Google Scholar 

  • Schmutterer H (ed) (2002) The neem tree: source of unique natural products for integrated pest management, medicine, industry and other purposes, 2nd edn. Neem Foundation, Mumbai

    Google Scholar 

  • Schuster DJ, Stansly PA (2000) Response of two lacewing species to biorational and broad-spectrum insecticides. Phytoparasitica 28:297–304

    CrossRef  CAS  Google Scholar 

  • Scott IM, Jensen H, Scott JG, Isman MB, Arnason JT, Philogène BJR (2003) Botanical insecticides for controlling agricultural pests: piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Arch Insect Biochem Physiol 54:212–225

    CrossRef  CAS  PubMed  Google Scholar 

  • Severson RF, Arrendale RF, Chortyk OT, Johnson AW, Jackson DM, Gwynn GR, Chaplin JF, Stephenson MG (1984) Quantitation of the major cuticular components from green leaf of different tobacco types. J Agric Food Chem 32:566–570

    CrossRef  CAS  Google Scholar 

  • Severson RF, Arrendale RF, Chortyk OT, Green CR, Thome FA, Stewart JL, Johnson AW (1985) Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf. J Agric Food Chem 33:870–875

    CrossRef  CAS  Google Scholar 

  • Severson RF, Chortyk OT, Stephenson MG, Akey DM, Neal JW Jr, Pittarelli GW et al (1994) Characterization of natural pesticides from Nicotiana gossei. In: Hedin PA (ed) Bioregulators for crop protection and pest control. ACS symposium series 557. American Chemical Society, Washington, DC, pp 109–121

    Google Scholar 

  • Shaaya E, Ikan R (1979) Insect control using natural products. In Gessbuhler H (ed) Advances in pesticide science. Pergamon Press, Oxford, Part 2, pp 303–306

    Google Scholar 

  • Shepherd T, Robertson GW, Griffiths DW, Birch ANE (1999a) Epicuticular wax composition in relation to aphid infestation and resistance in red raspberry Rubus idaeus. Phytochemistry 52:1239–1254

    CrossRef  CAS  Google Scholar 

  • Shepherd T, Robertson GW, Griffiths DW, Birch ANE (1999b) Epicuticular wax ester and triacyl glycerol composition in relation to aphid infestation and resistance in red raspberry R. idaeus. Phytochemistry 52:1255–1277

    CrossRef  CAS  Google Scholar 

  • Singh D (1996) Medicinal and aromatic plants in insect pest management. In: Narwal SS, Tauro P (eds) Allelopathy in pest management for sustainable agriculture. Scientific Publisher, Jodhpur, pp 125–136

    Google Scholar 

  • Singh D (1998) Non-conventional medicinal and aromatic plants as source of botanical insecticides. In: Proceedings of Ist national symposium for pest management in horticultural crops, Bangalore, pp 195–199

    Google Scholar 

  • Singh D (2005) Potential of insect growth regulators in Helicoverpa management. In: Saxena H, Rai AB, Ahmed R, Gupta S (eds) Recent advances in Helicoverpa management. Indian Society of Pulse Research/Indian Institute of Pulse Research, Kanpur, pp 241–249

    Google Scholar 

  • Singh D (2006) Status and prospects of integrated pest management strategies in selected crops- medicinal plants. In: Amerika Singh, Sharma OP, Garg DK (eds) Integrated pest management: principles and applications, vol 2. Applications. CBS Publishers and Distributors, New Delhi, pp 615–636

    Google Scholar 

  • Singh D, Agrawal SK (1988) Himachalol and β-himachalene: insecticidal principles of Himalayan cedarwood oil. J Chem Ecol 14:1145–1151

    CrossRef  CAS  PubMed  Google Scholar 

  • Singh D, Mehta SS (1998) Screening of plant material for repellent and insecticidal properties against pulse beetle (Callosobruchus chinensis) and house fly (Musca domestica). J Med Arom Plant Sci 20:397–400

    Google Scholar 

  • Singh D, Mehta SS (2010) Menthol containing formulation inhibits Adzuki Bean Beetle, Callosobruchus chinensis L. (Coleoptera; Bruchidae) population in pulse grain storage. J Biopestic 3(3):523–530

    Google Scholar 

  • Singh D, Rao SM (1986) Effect of cedarwood oil on reproduction of Dysdercus koenigii (F.). Curr Sci 55:422–423

    Google Scholar 

  • Singh RP, Saxena RC (1999) Azadirachta indica A Juss. Oxford & IBH Publishing Pvt. Ltd., Delhi, 330 pp

    Google Scholar 

  • Singh D, Singh AK (1991) Repellent and insecticidal properties in essential oils against housefly, Musca domestica L. Int J Trop Insect Sci 12(4):487–491

    CrossRef  Google Scholar 

  • Singh D, Rao SM, Tripathi AK (1984) Cedarwood oil as a potential insecticidal agent against mosquitoes. Naturwissenschaften 71:265–266

    CrossRef  CAS  PubMed  Google Scholar 

  • Singh D, Siddiqui MS, Sharma S (1989) Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat. J Econ Entomol (USA) 83:727–733

    CrossRef  Google Scholar 

  • Singh D, Mehta SS, Ram RD, Kumar S (1998) A novel formulation useful as pest repellent for stored grains. Granted Indian Patent No. 189730 dated 27-01-2004 Application No. 1974/Del/98 dated 10-07-98

    Google Scholar 

  • Singh D, Mehta SS, Kumar N, Shukla YN, Mishra M, Kumar S (2000) A process for preparation of fraction having insecticidal properties from Catharanthus roseus. (NF 183/98)

    Google Scholar 

  • Singh D, Mehta SS, Kumar S (2001) Bio-potential of some botanical tablet formulations in controlling the population of Callosobruchus chinensis L. and Tribolium castaneum Herbst. In: Proceedings of 2nd international symposium on biopesticides (Toxicology, safety, evaluation, production and proper use) held at Wuhan, China during 26–30 October 1998, pp 95–99

    Google Scholar 

  • Singh D, Mehta SS, Neoliya NK, Shukla YN, Mishra M (2003) New possible insect growth regulators from Catharanthus roseus. Curr Sci 84(9):1184–1186

    CAS  Google Scholar 

  • Stroh J, Wan MT, Isman MB, Moul DJ (1998) Evaluation of the acute toxicity to juvenile pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol 60:923–930

    CrossRef  CAS  PubMed  Google Scholar 

  • Tanzubil PB, McCaffrey AR (1990) Effects of azadirachtin in the African armyworm (Spodoptera exempta). Entomol Exp Appl 57:115–121

    CrossRef  CAS  Google Scholar 

  • Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y (1995) Antimalarial sesquiterpenes from tubers of Cyperus rotundus: structure of 10,12-peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry 40:125–128

    CrossRef  CAS  PubMed  Google Scholar 

  • Towers GHN (1984) Interactions of light with phytochemicals in some natural and novel systems. Can J Bot 62:2900–2911

    CrossRef  CAS  Google Scholar 

  • Tripathi AK, Singh D (1994) Screening of natural products for insect anti-feedant activity Part I. Plant extracts. Indian J Entomol 56(2):129–133

    Google Scholar 

  • Tripathi AK, Rao SM, Singh D, Chakravarty RB, Bhakuni DS (1987) Antifeedant activity of plant extracts against Spilosoma obliqua Walker. Curr Sci 56:607–609

    Google Scholar 

  • Tripathi AK, Singh D, Jain DC (1990) Persistency of Tylophorine as an insect antifeedant against Spilosoma obliqua Walker. Phytother Res (UK) 4:405–406

    Google Scholar 

  • Tripathi AK, Prajapati V, Aggarwal KK, Kumar S, Prajapti V, Kumar S, Kukreja AK, Dwivedi S, Singh AK (2000) Effect of volatile oil constituents of Mentha species against stored grain pests, Callosobruchus maculatus and Tribolium castaneum. J Med Arom Plant Sci 22:549–556

    CAS  Google Scholar 

  • Tripathi AK, Prajapati V, Kumar S (2003) Bioactivities of l-carvone, d-carvone, and dihydrocarvone toward three stored product beetles. J Econ Entomol 96:1594–1601

    CrossRef  CAS  PubMed  Google Scholar 

  • Tsao R, Zhou T (2000) Antifungal activity of monoterpenoids against postharvest pathogens Botrytis cinerea and Monilinia fructicola. J Essent Oil Res 12:113–121

    CrossRef  CAS  Google Scholar 

  • Tsunao MK, Hassanali A, Jondiko IJO, Tocco B (1993) Mutangin, a dihydroagarofuranoid sesquiterpene insect antifeedant from Elaeodendron buchananii. Phytochemistry 34:665–667

    CrossRef  Google Scholar 

  • Tu YK, Zhou DGW, Chen YZ, Pan XF (1990) Bioactive sesquiterpene polyol esters from Euonymus bungeanus. J Nat Prod 53:603–608

    CrossRef  CAS  Google Scholar 

  • Uhlenbroek JH, Bijloo JD (1959) Investigations on nematicides: II. Structure of a second nematicidal principle isolated from Tagetes roots. Recueil des travaux chimiques des Pays-Bas 78:382–390

    CrossRef  CAS  Google Scholar 

  • Ujvari I, Eya BK, Grendell RL, Toia RF, Casida JE (1991) Insecticidal activity of various 3-acyl and other derivatives of veracevine relative to the veratrum alkaloids veratridine and cevadine. J Agric Food Chem 39:1875–1881

    CrossRef  Google Scholar 

  • Velasquez J, Rojas LB, Usubillaga A (2004) Antifungal activity of naphthoquinone from Tabebuia serratifolia (Vahl, Nicholson). CIEN 12:64–69

    CAS  Google Scholar 

  • Verma BK, Pandey GP (1978) Treatment of stored greengram seed with edible oils for the protection from Callosobruchus maculatus (F.). Ind J Agric Sci 48:72–75

    Google Scholar 

  • Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646

    CrossRef  CAS  Google Scholar 

  • Wakabayashi N, Wu WJ, Waters RM (1988) Celangulin: a non-alkaloidal insect antifeedant from Chinese bittersweet Celastrus angulatus. J Nat Prod 51:537–542

    CrossRef  CAS  Google Scholar 

  • Wang L, Huang J, You M, Liu B (2004) Time dose mortality modeling and virulence indices for six strains of Verticillium lecanii against sweetpotato whitefly, Bemisia tabaci (Gennadius). J Appl Entomol 128:494–500

    CrossRef  Google Scholar 

  • Weber S, Puripattanavong J, Brecht V, Frahm AW (2000) Phytochemical investigation of Aglaia rubiginosa. J Nat Prod 63:636–642

    CrossRef  CAS  PubMed  Google Scholar 

  • Wedge DE, Galindo JCG, Macias FA (2000) Fungicidal toxicity of natural and synthetic sesquiterpene lactone analogues. Phytochemistry 53:747–757

    CrossRef  CAS  PubMed  Google Scholar 

  • Weinzierl RA (2000) Botanical insecticides, soaps, and oils. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publisher, Boca Raton, USA, pp 101–121

    Google Scholar 

  • Wilson CL, Solar JM, Ghaouth A, Wisniewski ME (1997) Rapid evaluation of plant extracts and essential oils for antifungal activity in Botrytis cinerea. Plant Dis 81:204–210

    CrossRef  CAS  Google Scholar 

  • Xia Y, Johnson AW, Chortyk OT (1997a) Effect of leaf surface moisture and relative humidity on the efficacy of sugar esters from Nicotiana gossei against the tobacco aphid (Homoptera: Aphididae). J Econ Entomol 90:1010–1014

    CrossRef  CAS  Google Scholar 

  • Xia Y, Johnson AW, Chortyk OT (1997b) Enhanced toxicity of sugar esters to the tobacco aphid using humectants. J Econ Entomol 90:1015–1021

    CrossRef  CAS  Google Scholar 

  • Xuan TD, Elzaawely AA, Fukuta M, Tawata S (2006) Herbicidal and fungicidal activities of lactones in Kava (Piper methysticum). J Agric Food Chem 54:720–725

    CrossRef  CAS  PubMed  Google Scholar 

  • Yamada K, Shizuri Y, Hirata Y (1978) Isolation and structure of a new alkaloidal alatimine and an insecticidal alkaloid. Tetrahedron 34:1915–1925

    CrossRef  CAS  Google Scholar 

  • Yamasaki RB, Klocke JA (1987) Structure-bioactivity relationships of azadirachtin, a potent insect control agent. J Agric Food Chem 35:467–471

    CrossRef  CAS  Google Scholar 

  • Zambonelli A, Aulerjo AZ, Bianchi A, Albasini A (1996) Effects of essential oils on phytopathogenic fungi in vitro. J Phytopathol 144:491–494

    CrossRef  CAS  Google Scholar 

  • Zaridah MZ, Nor Azah MA, Abu Said A, Mohd. Faridz ZP (2003) Larvicidal properties of citronellal and Cymbopogon nardus essential oils from two different localities. Trop Biomed 20:169–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Walia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Walia, S., Saha, S., Rana, V.S. (2014). Phytochemical Pesticides. In: Singh, D. (eds) Advances in Plant Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2006-0_15

Download citation