Aalten PM, Gowen SR (1998) Entomopathogenic nematodes and fluorescent Pseudomonas rhizosphere bacteria inhibiting Radopholus similis invasion in banana roots. Brighton Crop Prot Conf Pests Dis 2:675–680
Google Scholar
Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of fusarium wilts. Pestic Sci 37:365–373
Google Scholar
Ali NI, Siddiqui IA, Shahid J, Shaukat S, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058
CAS
Google Scholar
Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67
CAS
Google Scholar
Backman PA, Wilson M, Murphy JF (1997) Bacteria for biological control of plant diseases. In: Rechcigl NA, Rechecigl JE (eds) Environmentally safe approaches to crop disease control. Lewis Publishers, Boca Raton, pp 95–109
Google Scholar
Banasco P, Fuente DeLa L, Gaultieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 10(Suppl 10–11):1317–1323
Google Scholar
Bansal RK, Verma VK (2002) Antagonistic efficacy of Azotobacter chroococcum against Meloidogyne javanica infecting brinjal. Indian J Nematol 32:132–134
Google Scholar
Bell E, Muller JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137
PubMed
CAS
PubMed Central
Google Scholar
Boruah HP, Kumar BS (2002) Biological activity of secondary metabolites produced by a strain of Pseudomonas fluorescens. Folia Microbiol 47:359–363
Google Scholar
Broadway RM, Gongora C, Kain WC, Sanderson JA, Monroy JA, Bennett KC, Warner JB, Hoffman MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24:985–998
CAS
Google Scholar
Buonassisi AJ, Copeman RJ, Pepin HS, Eaton GW (1986) Effect of Rhizobium spp. on Fusarium solani f. sp. phaseoli. Can J Phytopathol 8:140–146
Google Scholar
Burdman S, Volpin H, Kigel J, Kaplunic Y, Okon Y (1996) Appl Environ Microbiol 62:3030–3033
PubMed
CAS
PubMed Central
Google Scholar
Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004) Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J Microbiol Biotechnol 20:501–504
CAS
Google Scholar
Chahal PPK, Chahal VPS (1986) Effect of Azotobacter chroococcum on the hatching of egg masses and eggs of Meloidogyne incognita. Plant Soil 95:289–292
Google Scholar
Chahal PPK, Chahal VPS (1988) Biological control of root-knot nematode on brinjal (Solanum melongena L.) with Azotobacter chroococcum. In: Maqbool MA, Golden AM, Gaffar A, Krusberg LQ (eds) Advances in plant nematology. National Nematological Research Centre, University of Karachi, Karachi, pp 257–263
Google Scholar
Chahal VPS, Chahal PPK (1999) Final technical report of PL – 480 project on microbial control of plant parasitic nematodes submitted to USDA
Google Scholar
Chahal VPS, Chahal PPK (2003) Bacillus thuringiensis for the control of Meloidogyne incognita. In: Trivedi PC (ed) Nematode management in plants. Scientific Publishers (India), Jodhpur, pp 251–257
Google Scholar
Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46(Suppl 3):186–195
PubMed
CAS
Google Scholar
Charest MH, Beauchamp CJ, Antoun H (2005) Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum. FEMS Microbiol Ecol 52:219–227
PubMed
CAS
Google Scholar
Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul
Google Scholar
Dandurand LM, Knudsen GR (1993) Influence of Pseudomonas fluorescens on hyphal growth and biocontrol efficacy of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265–270
Google Scholar
Dicke M, Van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249
CAS
Google Scholar
Duffy BK, Weller DM (1995) Use of Gaeumannomyces graminis var. graminis alone and in combination with fluorescent Pseudomonas spp. to suppress take-all of wheat. Plant Dis 79:907–911
Google Scholar
Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194
Google Scholar
Eapen SJ, Ramana KV, Sarma YR (1997) Evaluation of Pseudomonas fluorescens isolates for control of Meloidogyne incognita in black pepper (Piper nigrum L). In: Edison S, Ramana KV, Sasikumar B, Babu KN, Eapen SJ (eds) Biotechnology of spices, medicinal & aromatic plants. Indian Institute of Spices Research, Calicut, pp 129–133
Google Scholar
Fuhrmann J, Wollum AG (1989) Biol Fertil Soils 7:108–112
Google Scholar
Goel AK, Sindhu SS, Dadarwal KR (2002) Biol Fertil Soils 36:391–396
CAS
Google Scholar
Guetsky R, Elad Y, Shtienberg D, Dinoor A (2002) Establishment, survival and activity of the biocontrol agents Pichia guilermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Sci Technol 12:705–714
Google Scholar
Haas D, Defago G (2005) Nat Rev Microbiol 3:307–319
PubMed
CAS
Google Scholar
Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91:415–422
PubMed
CAS
Google Scholar
Hanafi A, Traore M, Schnitzler WH, Woitke M (2007) Induced resistance of tomato to whiteflies and Pythium with the PGPR Bacillus subtilis in a soilless crop grown under greenhouse conditions. In: Hanafi A, Schnitzler WH (eds) Proceedings of the VIIIth IS on protected cultivation in mild winter climates, pp 315–322. Acta Hort. 747
Google Scholar
Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869
PubMed
CAS
PubMed Central
Google Scholar
Hassett D, Cuppoletti J, Trapnell B, Lymar S, Rowe J, Yoon S, Hilliard G, Parvatiyar K, Kamani M, Wozniak D, Hwang S, McDermott T, Ochsner U (2002) Adv Drug Deliv Rev 54:1425–1443
PubMed
CAS
Google Scholar
Hoffland E, Hakulinem J, Van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762
Google Scholar
Hubbard JP, Harmand GE, Hadar Y (1983) Effect of soilborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology 73:655–659
Google Scholar
Insunza V, Alstrom S, Eriksson KB (2002) Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil 241:271–278
CAS
Google Scholar
Janisiewicz WJ (1996) Ecological diversity, niche overlap and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473–479
Google Scholar
Kavitha K, Nakkeeran S, Chandrasekar G, Fernando WGD, Mathiyazhagan S, Renukadevi P, Krishnamoorthy AS (2003) Role of antifungal antibiotics, siderophores and IAA production in biocontrol of Pythium aphanidermatum inciting damping off in tomato by Pseudomonas chlororaphis and Bacillus subtilis. Proceedings of the 6th international workshop on PGPR. Indian Institute of Spice Research, Calicut, pp 493–497
Google Scholar
Kendrick WB (1963) Mycopath Appl 19:241–245
CAS
Google Scholar
Khan MR, Tarannum Z (1999) Effects of field application of various micro-organisms on Meloidogyne incognita on tomato. Nematol Medit 27:233–238
Google Scholar
Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24 Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1:72–93, 1/00
Google Scholar
Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology- applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274
Google Scholar
Kloepper JW, Schroth MN (1981) Development of powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 71:590–592
Google Scholar
Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden RD, Waughn JL (eds) Pest management: biologically based technologies. American Chemical Society Books, Washington, DC, pp 156–165
Google Scholar
Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10(Suppl 3):601–609
Google Scholar
Kumar BSD, Berggren I, Martensson AM (2001) Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34
CAS
Google Scholar
Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028
Google Scholar
Leavy E, Eyal Z, Chet I, Hochman A (1992) Physiol Mol Plant Pathol 40:163–171
Google Scholar
Leeman M, Den Ouden FM, van Pelt JA, Dirks FPM, Steiji H (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155
CAS
Google Scholar
Lemanceau P, Alabouvette C (1993) Suppression of Fusarium wilts by fluorescent Pseudomonas: mechanisms and applications. Biocontrol Sci Technol 3:219–234
Google Scholar
Lemanceau P, Bakker PAHM, de Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of non-pathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82
PubMed
CAS
PubMed Central
Google Scholar
Liu L, Kloepper JW, Tuzun S (1993a) Induction of systemic resistance against cucumber bacterial angular leaf spot caused by Pseudomonas syringae pv. lachrymans with two plant growth promoting rhizobacteria (Abstr.). Phytopathology 82:1340
Google Scholar
Liu L, Kloepper JW, Tuzun S (1993b) Induction of systemic resistance to Fusarium oxysporum by PGPR strains (Abstr.). In: Proceedings of the sixth international congress of plant pathology, vol 24
Google Scholar
Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698
Google Scholar
Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against bacterial leaf spot by plant growth promoting rhizhobacteria. Phytopathology 85:843–847
Google Scholar
Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 38:461–490
Google Scholar
Mani MP, Rajeswari S, Sivakumar CV (1998) Management of the potato cyst nematodes, Globodera spp. through plant rhizosphere bacterium Pseudomonas fluorescens Migula. J Biol Control 12:131–134
Google Scholar
Mani MP, Sivakumar CV, Ramakrishnan S (1999) Status of Pasteuria penetrans in root-knot nematode infested vineyards of Tamil Nadu. Indian J Nematol 29:104
Google Scholar
Manjula K, Podile AR (2001) Chitin supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47:618–625
PubMed
CAS
Google Scholar
Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, Krishnamoorthy AS, Fernando WGD (2004) PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Arch Phytopathol Plant Prot 33:183–199
Google Scholar
Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81:557–564
PubMed
CAS
Google Scholar
Mew TW, Rosales AM, Maningas TW (1994) Biological control of rhizoctonia sheath blight and blast of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Proceedings of the third international workshop on plant growth promoting rhizobacteria, Adelaide, South Australia
Google Scholar
Nagórska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54(Suppl 3):495–508
PubMed
Google Scholar
Naik D (2004) Biotechnological approaches for the management of wilt disease complex in capsicum (Capsicum annum L.) and Egg Plant (Solanum melongena) with special emphasis on biological control. Ph. D. thesis, Kuvempu University, Shimoga
Google Scholar
Nakkeeran S, Kavitha K, Mathiyazhagan S, Fernando WGD, Chandrasekar G, Renukadevi P (2004) Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L). Can J Plant Pathol 26:417–418
Google Scholar
Nandakumar R (1998) Induction of systemic resistance in rice with fluorescent pseudomonads for the management of sheath blight disease. M.Sc. (Agri.). thesis, TNAU, Coimbatore, India, 105 pp
Google Scholar
Negi YK, Garg SK, Kumar J (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89(Suppl 12):25
Google Scholar
Niknam GR, Dhawan SC (2001a) Induction of systemic resistance by Bacillus subtilis isolate Bs1 against Rotylenchulus reniformis in tomato. National Congress on Centenary of Nematology in India – appraisal & future plans. Indian Agricultural Research Institute, New Delhi, pp 143–144
Google Scholar
Niknam GR, Dhawan SC (2001b) Effect of seed bacterization, soil drench and bare root-dip application methods of Pseudomonas fluorescens isolate Pf1 on the suppression of Rotylenchulus reniformis infecting tomato. National Congress on Centenary of Nematology in India – appraisal & future plans. Indian Agricultural Research Institute, New Delhi, p 144
Google Scholar
Otsu Y, Matsuda Y, Mori H, Ueki H, Nakajima T, Fujiwara K, Matsumoto M, Azuma N, Kakutani K, Nonomura T, Sakuratani Y, Shinogi T, Tosa Y, Mayama S, Toyoda H (2004) Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilacna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci Technol 14:427–439
Google Scholar
Parvatha Reddy P, Nagesh M, Rao MS, Rama N (2000) Management of Tylenchulus semipenetrans by integration of Pseudomonas fluorescens with oil cakes. In: Proceedings of the international symposium on citriculture, Nagpur, India, pp 830–833
Google Scholar
Paulitz TC, Belanger RB (2001) Biological control in greenhouse systems. Ann Rev Phytopathol 39:103–133
CAS
Google Scholar
Perveen S, Ehteshamul-Haque S, Ghaffar A (1998) Efficacy of Pseudomonas aeruginosa and Paecilomyces lilacinus in the control of root rot-root knot disease complex on some vegetables. Nematol Medit 26:209–212
Google Scholar
Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947
Google Scholar
Raaijimakers MJ, Leeman M, Mark MP, Schot V (1995) Dose response relationships in biological control of Fusarium wilt of radish by Pseudomonas sp. Phytopathology 85:1075–1081
Google Scholar
Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547
PubMed
CAS
Google Scholar
Racke J, Sikora RA (1992) Isolation, formulation and antagonistic activity of rhizosphere bacteria toward the potato cyst nematode. Globodera pallida Soil Biol Biochem 24:521–526
Google Scholar
Ramamoorthy V, Raguchander T, Samiyappan R (1999) Isolation, characterization and screening fluorescent pseudomonads for managing damping-off disease of major vegetable crops. Symposium on plant disease management for sustainable agriculture. Indian Phytopathological Society, Southern Zone held at C.P.C.R.I. Kayankulam, Kerala, India, p 26
Google Scholar
Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11
CAS
Google Scholar
Rao MS, Shylaja M (2004) Role of Pseudomonas fluorescens (Migula) in induction of systemic resistance (ISR) and managing Rotylenchulus reniformis (Linford and Oliveira) on carrot (Daucus carota L.). Pest Manag Hort Ecosyst 10:87–93
Google Scholar
Rao MS, Naik D, Shylaja M, Parvatha Reddy P (2002) Prospects for the management of nematode disease complex in capsicum using biological control agents. In: Proceedings of international conference on vegetables, Bangalore, pp 347–351
Google Scholar
Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164
PubMed
CAS
Google Scholar
Reitz M, Rudolph K, Schröder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518
PubMed
CAS
PubMed Central
Google Scholar
Ryan KJ, Ray CG, Sherris (2004) Medical microbiology (4th ed). McGraw Hill
Google Scholar
Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253
CAS
Google Scholar
Samiyappan R (2009) Biological control of fungal nematode complex diseases by plant growth promoting rhizobacteria (PGPR). In: Rajendran G, Ramakrishnan S, Subramanian S, Jonathan EI, Sivakumar M, Kumar S (eds) Biological control of plant parasitic nematodes. Agrotech Publishing Academy, Udaipur, pp 69–77
Google Scholar
Santhi A (2003) Management of Radopholus similis, Helicotylenchus multicinctus and Pratylenchus coffeae in Banana. Ph. D. thesis, Tamil Nadu Agricultural University, Coimbatore
Google Scholar
Santhi A, Sivakumar CV (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 on tomato. J Biol Control 9:113–115
Google Scholar
Santhi A, Rajeswari S, Sivakumar CV (1998) Soil application of Pseudomonas fluorescens (Migula) for the control of root-knot nematode (Meloidogyne incognita) on grapevine (Vitis vinifera Linn.). In: Mehta UK (ed) Nematology – challenges and opportunities in 21st century. Sugarcane Breeding Institute, Coimbatore, pp 203–206
Google Scholar
Santhi A, Sundarababu R, Sivakumar CV (1999) Field evaluation of rhizobacterium, Pseudomonas fluorescens for the management of the citrus nematode, Tylenchulus semipenetrans. Proceedings of the national symposium on rational approaches in nematode mangement for sustainable agriculture. Indian Agricultural Research Institute, New Delhi, pp 38–42
Google Scholar
Schippers B (1992) Prospects for management of natural suppressiveness to control soilborne pathogens. In: Tiamos EC, Panavizas GC, Cook RJ (eds) Biological control of plant diseases, progress and challenges for the future. NATO ASI series A: life sciences, vol 230. Plenum Press, New York, pp 21–34
Google Scholar
Schroth MN, Hancock JG (1982) Science 216:1376–1381
PubMed
CAS
Google Scholar
Seenivasan N, Parameswaran S, Sridar P, Gopalakrishnan C, Gnanamurthy P (2001) Application of bioagents and neem cake as soil application for the management of root-knot nematode in turmeric. National Congress on Centenary of Nematology in India – appraisal & future plans. Indian Agricultural Research Institute, New Delhi, p 164
Google Scholar
Siddiqui ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142
Google Scholar
Siddiqui ZA, Mahmood I (1995) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fund Appl Nematol 18:559–566
Google Scholar
Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179
CAS
Google Scholar
Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant-parasitic nematodes. Ann Rev Phytopathol 30:245–270
Google Scholar
Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99
PubMed
CAS
Google Scholar
Sivakumar M, Vadivelu S (1999) Management of Meloidogyne incognita on grapevine using biocontrol agents, botanicals and biofertilizers. Pest Manag Hort Ecosyst 5:127–131
Google Scholar
Sobita Devi L, Dutta U (2002) Effect of Pseudomonas fluorescens on root-knot (Meloidogyne incognita) on okra plant. Indian J Nematol 32:215
Google Scholar
Sosamma VK, Koshy PK (1995) Effect of Pasteuria penetrans and Paecilomyces lilacinus on population build up of root-knot nematode, Meloidogyne incognita on black pepper. National symposium on nematode problems of India – an appraisal of the nematode mangement with eco-friendly approaches and biocomponents. Indian Agricultural Research Institute, New Delhi, p 47
Google Scholar
Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125
Google Scholar
Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385
CAS
Google Scholar
Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1965
PubMed
CAS
Google Scholar
Tuzun S, Kloeppper J (1995) Practical application and implementation of induced resistance. In: Hammerschmidt R, Kuć J (eds) Induced resistance to disease in plants. Kluwer Academic Publishers, Dordrecht, pp 152–168
Google Scholar
Valenzuela-Soto JH, Estrada-Herna’ndez MG, Ibarra-Laclette E, De’lanoFrier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231:397–410
PubMed
CAS
Google Scholar
Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. WCS417r. Phytopathology 81:728–734
Google Scholar
Verma AC (2001) N.D. University of agriculture and technology, Kumarganj, Faizabad, Uttar Pradesh. In: Dhawan SC et al. (eds) Indian nematology-progress and perspectives, Division of Nematology, Indian Agricultural Research Institute, New Delhi, pp 121–125
Google Scholar
Verma KK, Gupta DC, Paruthi IJ (1999) Preliminary trial on the efficacy of Pseudomonas fluorescens as seed treatment against Meloidogyne incognita in tomato. Proceedings of the national symposium on rational approaches in nematode management for sustainable agriculture. Indian Agricultural Research Institute, New Delhi, pp 79–81
Google Scholar
Vidhyasekaran P, Sethuraman K, Rajappan K, Vasumathi K (1997) Powder formulation of Pseudomonas fluorescens to control pigeonpea wilt. Biol Control 8:166–171
Google Scholar
Viswanathan R (1999) Induction of systemic resistance against red rot disease in sugarcane by plant growth promoting rhizobacteria. Ph.D. thesis, Tamil Nadu Agricultural University, Coimbatore, India, 175 pp
Google Scholar
Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology 81:1508–1512
Google Scholar
Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407
Google Scholar
Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256
PubMed
Google Scholar
Weller DM, Thomashow LS (1993) Use of rhizobacteria for biocontrol. Curr Opin Biotechnol 4:306–311
Google Scholar
Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann Rev Phytopathol 40:309–348
CAS
Google Scholar
Wipat A, Harwood CR (1999) FEMS Microb Ecol 28:1–9
CAS
Google Scholar
Zehnder G, Kloepper J, Tuzun S, Yao CB, Wei G, Chambliss O, Shelby R (1997a) Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Entomol Exp Appl 83:81–85
Google Scholar
Zehnder G, Kloepper JW, Yao C, Wei G (1997b) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol 90:196–391
Google Scholar