Advertisement

Switched Capacitance Minimization

  • Ajit PalEmail author
Chapter

Abstract

This chapter addresses the problem of switched capacitance minimization. As it is possible to use both hardware- and software-based approaches to minimize switched capacitance, a hardware–software codesign approach is presented. This is followed by the use of bus encoding to reduce switching activity. Both redundant and nonredundant approaches are available. A nonredundant bus-encoding technique such as Gray coding technique for address bus is explained. Redundant bus-encoding techniques such as one-hot encoding, bus-inversion encoding, and T0 encoding techniques are presented. Clock-gating technique can be used to reduce switching activity. Clock gating at different levels of granularity is discussed. The synthesis of gated-clock finite-state machine (FSM) to reduce power consumption of FSMs is introduced. An FSM state encoding approach is presented to minimize the switching activity. Another approach for reducing switching activity of an FSM is FSM partitioning in which a single FSM is partitioned into more than one FSM to reduce switching activity, which is also presented. The techniques of operand isolation and precomputation are briefly introduced. The basic approach of minimizing glitching power has been considered. Finally, various logic styles, including dynamic complementary metal–oxide–semiconductor (CMOS) and pass-transistor logic styles, are considered and compared with the static CMOS style, which is the most popular logic style.

Keywords

Hardware–software codesign Bus encoding Gray coding One-hot coding Bus-inversion coding T0 coding Clock gating Clock-gating granularity Gated-clock FSMs FSM state encoding FSM partitioning Operand isolation Precomputation Glitching power minimization ROBDD Memory splitting Logic restructuring Transition rate buffering Pin swapping 

References

  1. 1.
    Aghaghiri, Y., Fallah, F., Pedram, M.: Irredundant address bus encoding for low power ISLPED ’01. Huntington Beach, CA, 6–7 August 2001Google Scholar
  2. 2.
    Bellaouar, A., Elmasry, M.I.: Low-Power Digital VLSI Design Circuits and Systems. Kluwer, Norwell (1965)Google Scholar
  3. 3.
    Benini, L., Micheli, G.D.: State assignment for low power dissipation. IEEE J. Solid-State Circuits 30, 258–268 (1995)CrossRefGoogle Scholar
  4. 4.
    Benini, L., Micheli, G., Macii, E., Sciuto, D., Silvano, C.: Address bus encoding techniques for system-level power optimization. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 861–867 (1998)Google Scholar
  5. 5.
    Bertacco, V., Minato, S., et al.: Decision diagrams and pass transistor logic synthesis. In: IEEE/ACM Proceeding of ICCAD. pp. 256–263, Nov 1995Google Scholar
  6. 6.
    Brayton, R., Rudell, R., Sangiovanni-Vincentelli, A., Wang, A.: MIS: a multiple-level logic optimization system. IEEE Trans. Computer-Aided Des. Integr. Circuits CAD-6(6), 1062–1081 (1987)CrossRefGoogle Scholar
  7. 7.
    Brayton, R.K., et al.: SIS: a system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, Electronics Research Laboratory, College of Engineering, University of CaliforniaGoogle Scholar
  8. 8.
    Buch, P., Narayana, A., Newton, A.R., Vincentelli, A.S.: Logic synthesis for large pass transistor circuits. In: IEEE/ACM Proceeding of ICCAD. pp. 663–670, Nov 1997Google Scholar
  9. 9.
    Chandrakasan, A.R., Brodersen, R.W.: Low-Power Digital CMOS Design. Kluwer, Norwell (1995)CrossRefGoogle Scholar
  10. 10.
    Chaudhury, R., Liu, T-H., Aziz, A., Burns, J.L.: Area oriented synthesis for pass transistor logic. In: IEEE/ACM Proceeding of ICCAD, pp. 592–596, Nov 1998Google Scholar
  11. 11.
    Choudhury, P., Pradhan, S.N.: Power modeling of power gated FSM and its low power realization by simultaneous partitioning and state encoding using genetic algorithm by simultaneous partitioning and state encoding using genetic algorithm. In: Proceeding of the VDAT’12 16th International Conference on Progress in VLSI Design and Test, pp. 19–29. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Detjens, E., Gannot, G., Rudell, R., Sangiovanni-Vincentelli, A., Wang, A.: Technology mapping in MIS. In: IEEE/ACM Proceeding of ICCAD, pp. 116–119 (1987)Google Scholar
  13. 13.
    Favalli, M., Benini, L., De Micheli, G.: Design for testability of gated-clock FSMs. In: Proceedings of the European Design and Test Conference ED&TC, pp. 589–596, 11–14 March 1996Google Scholar
  14. 14.
    Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the DAC 1982, pp. 171–181, 14–16 June 1982Google Scholar
  15. 15.
    Keating, M., Flynn, D., Aitken, R., Gibbons, A., Shi, K.: Low Power Methodology Manual: For System-on-Chip Design. Springer, Berlin (2007)Google Scholar
  16. 16.
    Klaiber, A.: The Technology Behind Crusoe™ Processors. Low-power x86Compatible Processors Implemented with Code Morphing™ Software. Transmeta Corporation, Jan 2000Google Scholar
  17. 17.
    Liu, T-H., Aziz, A., Burns, J.L.: Performance oriented synthesis for pass transistor logic. In: Proceeding of IWLS. pp. 334–338, June 1998Google Scholar
  18. 18.
    Pal, A., Mukherjee, A.: Synthesis of two-level dynamic CMOS circuits. In: IEEE Proceeding of International Workshop on Logic Synthesis, May 1999Google Scholar
  19. 19.
    Prasad, M.R., Kirkpatrick, D., Brayton, R.K.: Domino logic synthesis and technology mapping. In: IEEE Proceeding of IWLS, pp. 233–240 (1987)Google Scholar
  20. 20.
    Samanta, D., Pal, A.: Logic styles for high performance and low power. In: Proceedings of the 12th International Workshop on Logic and Synthesis, 2003 (IWLS-2003), pp. 355–362. Laguna Beach, California, USA, 28–30 May 2003Google Scholar
  21. 21.
    Samanta, D., Sinha, N., Pal, A.: Synthesis of high performance low power dynamic CMOS Circuits. In: IEEE Proceeding of VLSI Design 2002, pp. 99–104, Jan 2002Google Scholar
  22. 22.
    Samanta, D., Dharmadeep, M.C., Pal, A.: Synthesis of high performance low power PTL circuits. In: ACM Proceeding of ASP-DAC 2003, pp. 209–212 Jan 2003Google Scholar
  23. 23.
    Yano, K., Sasaki, Y., Rikino, K., Seki, K.: Top down pass transistor logic design. IEEE J. Solid-State Circuits 31(6), 792–803 (1996)CrossRefGoogle Scholar
  24. 24.
    Zhao, M., Sapatnekar, S.S.: Technology mapping for domino logic. In: IEEE/ACM Proceeding of DAC, pp. 248–251 (1998)Google Scholar
  25. 25.
    Zimmermann, R., Fichtner, W.: Low-power logic styles: CMOS versus pass-transistor logic. IEEE J. Solid-State Circuits 32(7), 1079–1090 (1997)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations